首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the effects of cycle and run training on rating of perceived exertion at the lactate threshold (LT), college men completed a 40-session training program in 10 weeks (n = 6 run training, n = 5 cycle training, n = 5 controls). Pre- and post-training variables were measured during graded exercise tests on both the bicycle ergometer and treadmill. ANOVA on the pre- and post-training difference scores resulted in similar improvements in VO2max for both testing protocols, regardless of training mode. The run training group increased VO2 at the LT by 58.5% on the treadmill protocol and by 20.3% on the cycle ergometer. Cycle trainers increased VO2 LT only during cycle ergometry (+38.7%). No changes were observed in the control group. No differences for RPE at the LT were found before or after training, or between testing protocols for any group. Perception of exercise intensity at the LT ranged from "very light" to "light". The relationship between RPE and %VO2max was altered by the specific mode of training, with trained subjects having a lower RPE at a given %VO2max (no change in RPE at max.). It was concluded that RPE at the LT was not affected by training, despite the fact that after training the LT occurs at a higher work rate and was associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

2.
The objective of this study was to estimate the oxygen uptake (&OV0312;O2) in elite youth soccer players using measures of heart rate (HR) and ratings of perceived exertion (RPEs). Forty-six regional-level male youth soccer players (~13 years) participated in 2 VO(2)max tests. Data for HR, RPE, and VO(2) were simultaneously recorded during the VO(2)max tests with incremental running speed. Regression equations were derived from the first VO(2)max test. Two weeks later, all players performed the same VO(2)max test to validate the developed regression equations. There were no significant differences between the estimated values in the first test and actual values in the second test. During the continuous endurance exercise, the combination of percentage of maximal HR (%HRmax) and RPE measures gave similar estimation of %VO(2)max (R = 83%) in comparison to %HRmax alone (R = 81%). However, the estimation of VO(2) using combined %HRmax and RPE was not satisfactory (R = 45-46%). Therefore, the use of %HRmax (without RPE) to estimate %VO(2)max could be a useful tool in young soccer players during field-based continuous endurance testing and training. Specifically, coaches can use the %HRmax to quantify internal loads (%VO(2)max) and subsequently implement continuous endurance training at appropriate intensities. Furthermore, it seems that RPE is more useful as a measure of internal load during noncontinuous (e.g., intermittent and sprint) exercises but not to estimate %VO(2)max during continuous aerobic exercise (R = 59%).  相似文献   

3.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   

5.
The purpose of this study was to investigate the validity of heart rate (fc) and ratings of perceived exertion (RPE) as indices of exercise intensity in a group of children while swimming. Six healthy male swimmers, aged 10-12, swam tethered using the breast-stroke in a flume. The resistance started at 1.0 kg and increased in 1.0 kg steps up to the point of their exhaustion. The subjects swam for 5 min during each period, with a rest of 10-20 min until they had returned to their resting fc level. The last exercise intensity was with the maximal mass the subjects could support for 2 min. The last min of oxygen consumption (VO2) and 30 s of fc were measured during each exercise period. The subjects gave their RPE assessment at the end of exercise. The individual relationships between fc and VO2, and percentage maximal oxygen consumption (%VO2max) were linear with a high correlation r = 0.962-0.996 and r = 0.962-0.996, respectively. Therefore, it was concluded that fc was valid as an index of the exercise intensity of children while swimming. Compared to the results found in adults using a similar protocol, the children's fc were 8.3-26.9 beats.min-1 higher than those of the adults at the given %VO2max. The present study showed two different patterns in the relationship between VO2 and RPE in individuals. In two subjects the RPE increased linearly with VO2 while in the other four subjects the increase was discontinuous. If fc and RPE were to be applied to the setting and evaluation of exercise intensity during swimming, it would seem that fc would be a more useful guide than RPE for some children.  相似文献   

6.
To determine the effect of posture on maximal O2 uptake (VO2 max) and other cardiorespiratory adaptations to exercise training, 16 male subjects were trained using high-intensity interval and prolonged continuous cycling in either the supine or upright posture 40 min/day 4 days/wk for 8 wk and 7 male subjects served as non-training controls. VO2 max measured during upright cycling and supine cycling, respectively, increased significantly (P less than 0.05) by 16.1 +/- 3.4 and 22.9 +/- 3.4% in the supine training group (STG) and by 14.6 +/- 2.0 and 6.0 +/- 2.0% in the upright training group (UTG). The increase in VO2 max measured during supine cycling was significantly greater (P less than 0.05) in the STG than in the UTG. The increase in VO2 max in the UTG was significantly greater (P less than 0.05) when measured during upright exercise than during supine exercise. However, there was no significant difference in posture-specific VO2 max adaptations in the STG. A postural specificity was also evident in other maximal cardiorespiratory variables (ventilation, CO2 production, and respiratory exchange ratio). In the UTG, maximal heart rate decreased significantly (P less than 0.05) only during supine cycling; there was no significant difference in maximal heart rate after training in the STG. We conclude that posture affects maximal cardiorespiratory adaptations to cycle training. Additionally, supine training is more effective than upright training in increasing maximal cardiorespiratory responses measured during supine exercise, and the effects of supine training generalize to the upright posture to a greater extent than the effects of upright training generalize to the supine posture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The aim of this study was to test the hypothesis that bicycle training may improve the relationship between the global SEMG energy and VO2. We already showed close adjustment of the root mean square (RMS) of the surface electromyogram (SEMG) to the oxygen uptake (VO2) during cycling exercise in untrained subjects. Because in these circumstances an altered neuromuscular transmission which could affect SEMG measurement occurred in untrained individuals only, we searched for differences in the SEMG vs. VO2 relationship between untrained subjects and well-trained cyclists. Each subject first performed an incremental exercise to determine VO2max and the ventilatory threshold, and second a constant-load threshold cycling exercise, continued until exhaustion. SEMG from both vastus lateralis muscles was continuously recorded. RMS was computed. M-Wave was periodically recorded. During incremental exercise: (1) a significant non-linear positive correlation was found between RMS increase and VO2 increase in untrained subjects, whereas the relationship was best fitted by a straight line in trained cyclists; (2) the RMS/VO2 ratio decreased progressively throughout the incremental exercise, its decline being significantly and markedly accentuated in trained cyclists; (3) in untrained subjects, significant M-wave alterations occurred at the end of the trial. These M-wave alterations could explain the non-linear RMS increase in these individuals. During constant-load exercise: (1) after an initial increase, the VO2 ratio decreased progressively to reach a plateau after 2 min of exercise, but no significant inter-group differences were noted; (2) no M-wave changes were measured in the two groups. We concluded that the global SEMG energy recorded from the vastus lateralis muscle is a good estimate of metabolic energy expenditure during incremental cycling exercise only in well-trained cyclists.  相似文献   

8.
9.
The purpose of this study was to assess the rate of training-induced cardiorespiratory adaptations in older men [mean (SD), 66.5 (1.2) years]. The eight subjects trained an average of 4.3 (0.3) times each week. The walk/jog training was in two phases with 4 weeks (phase 1) at a speed to elicit 70% of pre-training maximal oxygen consumption (VO2max), and 5 weeks (phase 2) at 80%. Maximal exercise treadmill tests and a standardized submaximal protocol were performed prior to training, at weekly intervals during the training programme, and after training. VO2max (ml.kg-1.min-1) increased significantly over both phases: 6.6% after the first 4 weeks, and an additional 5.2% after the final 5 weeks. The weekly changes in VO2max over phase 1 were well fitted by an exponential association curve (r = 0.75). The half-time for the rate of adaptation was 13.8 days, or 8.3 training sessions. Over phase 2, the change in VO2max did not plateau and a time course could not be determined. Submaximal exercise heart rate (fc) was reduced a significant 10 beats.min-1 after the first 4 weeks, and further 6 beats.min-1 over the final 5 weeks. The fc reductions showed half-times of 9.1 days (phase 1) and 9.8 days (phase 2) (or 5-6 training sessions). The anaerobic ventilation threshold was increased 13.9% over the 9 weeks of training and the respiratory exchange ratio during constant load heavy exercise was significantly reduced; however, these changes could not be described by an exponential time course. Thus, short-term exercise training of older men resulted in significant and rapid cardiorespiratory improvements.  相似文献   

10.
The roles of absolute and relative oxygen uptake (VO2 and percent of muscle group specific VO2 max) as determinants of the cardiovascular and ventilatory responses to exercise over a wide range of active muscle mass have not previously been defined. Six healthy men performed four types of dynamic exercise--one-arm curl, one-arm cranking, and one- and two-leg cycling at four different relative work loads--25, 50, 75, and 100% of VO2 max for the corresponding muscle group. VO2 during maximal one-arm curl, one-arm cranking, and one-leg cycling averaged 20, 50, and 75%, respectively, of that for maximal two-leg cycling. Cardiac output was linearly related to VO2 with a similar slope and intercept for each type of exercise. Heart rate at a given %VO2 max was higher with larger active muscle mass. In relation to %VO2 max, systemic resistance was lower and plasma catecholamine levels were higher with larger active muscle mass. The cardiovascular responses to exercise are determined to a large extent by the active muscle mass and the absolute oxygen uptake, with the principal feature appearing to be the tight linkage between systemic oxygen transport and utilization.  相似文献   

11.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

12.
This study was designed to examine the interrelationships between performance in endurance running events from 10 to 90 km, training volume 3-5 weeks prior to competition, and the fractional utilization of maximal aerobic capacity (%VO2max) during each of the events. Thirty male subjects underwent horizontal treadmill testing to determine their VO2max, and steady-state VO2 at specific speeds to allow for calculation of %VO2max sustained during competition. Runners were divided into groups of ten according to their weekly training distance (group A trained less than 60 km X week-1, group B 60 to 100 km X week-1, and group C more than 100 km X week-1). Runners training more than 100 km X week-1 had significantly faster running times (average 19.2%) in all events than did those training less than 100 km X week-1. VO2max or %VO2max sustained during competition was not different between groups. The faster running speed of the more trained runners, running at the same %VO2max during competition, was due to their superior running economy (19.9%). Thus all of the group differences in running performance could be explained on the basis of their differences in running economy. These findings suggest either that the main effect of training more than 100 km X week-1 may be to increase running economy, or that runners who train more than 100 km X week-1 may have inherited superior running economy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The aim of this study was to examine the effect of aging and training status on ventilatory response during incremental cycling exercise. Eight young (24 ± 5 years) and 8 older (64 ± 3 years) competitive cyclists together with 8 young (27 ± 4 years) and 8 older (63 ± 2 years) untrained individuals underwent a continuous incremental cycling test to exhaustion to determine ventilatory threshold (VT), respiratory compensation point (RCP), and maximal oxygen uptake (VO?max). In addition, the isocapnic buffering (IB) phase was calculated together with the hypocapnic hyperventilation. Ventilatory threshold occurred at similar relative exercise intensities in all groups, whereas RCP was recorded at higher intensities in young and older cyclists compared to the untrained subjects. The IB phase, reported as the difference between VT and RCP and expressed either in absolute (ml·min?1·kg?1 VO?) or in relative terms, was greater (p < 0.01) in both young and older trained cyclists than in untrained subjects, who were also characterized by a lower exercise capacity. Isocapnic buffering was particularly small in the older untrained volunteers. Although young untrained and older trained subjects had a similar level of VO?max, older athletes exhibited a larger IB. In addition, a higher absolute but similar relative IB was observed in young vs. older cyclists, despite a higher VO?max in the former. In conclusion, the present study shows that aging is associated with a reduction of the IB phase recorded during an incremental exercise test. Moreover, endurance training induces adaptations that result in an enlargement of the IB phase independent of age. This information can be used for the characterization and monitoring of the physiological adaptations induced by endurance training.  相似文献   

14.
We tested the hypothesis that the lactate threshold (Tlac) during incremental exercise could be increased significantly during the first 3 wk of endurance training without any concomitant change in the ventilatory threshold (Tvent). Tvent is defined as O2 uptake (VO2) at which ventilatory equivalent for O2 [expired ventilation per VO2 (VE/VO2)] increased without a simultaneous increase in the ventilatory equivalent for CO2 (VE/VCO2). Weekly measurements of ventilatory gas exchange and blood lactate responses during incremental and steady-rate exercise were performed on six subjects (4 male; 2 female) who exercised 6 days/wk, 30 min/session at 70-80% of pretraining VO2max for 3 wk. Pretraining Tlac and Tvent were not significantly different. After 3 wk of training, significant increases (P less than 0.05) occurred for mean (+/- SE) VO2max (392 +/- 103 ml/min) and Tlac (482 +/- 135 ml/min). Tvent did not change during the 3 wk of training, despite significant (P less than 0.05) reductions in VE responses to both incremental and steady-rate exercise. Thus ventilatory adaptations to exercise during the first 3 wk of exercise training were not accompanied by a detectable alteration in the ventilatory "threshold" during a 1-min incremental exercise protocol. The mean absolute difference between pairs of Tlac and Tvent posttraining was 499 ml/min. Despite the significant training-induced dissociation between Tlac and Tvent a high correlation between the two parameters was obtained posttraining (r = 0.86, P less than 0.05). These results indicate a coincidental rather than causal relationship.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The present study was performed to clarify the effects of intermittent exposure to an altitude of 4,500 m with endurance training and detraining on ventilatory chemosensitivity. Seven subjects (sea-level group) trained at sea level at 70% maximal oxygen uptake (VO2 max) for 30 min/day, 5 days/wk for 2 wk, whereas the other seven subjects (altitude group) trained at the same relative intensity (70% altitude VO2 max) in a hypobaric chamber. VO2 max, hypoxic ventilatory response (HVR), and hypercapnic ventilatory response, as an index of central hypercapnic chemosensitivity (HCVR) and as an index of peripheral chemosensitivity (HCVRSB), were measured. In both groups VO2 max increased significantly after training, and a significant loss of VO2 max occurred during 2 wk of detraining. HVR tended to increase in the altitude group but not significantly, whereas it decreased significantly in the sea-level group after training. HCVR and HCVRSB did not change in each group. After detraining, HVR returned to the pretraining level in both groups. These results suggest that ventilatory chemosensitivity to hypoxia is more variable by endurance training and detraining than that to hypercapnia.  相似文献   

16.
Session rating of perceived exertion (SRPE) permits global effort estimations after an exercise bout and has shown promise for evaluating training load. However, factors mediating SRPE are not well understood. The purpose of this study was to compare SRPE between cycling and treadmill exercise at low and moderate intensities. In a counterbalanced order, male subjects (n = 7) completed a VO2max trial on a cycle ergometer and a motor-driven treadmill. Then, participants completed trials at 50 and 75% mode-specific VO2max on a cycle ergometer (BK75, BK50) and a treadmill (TM75, TM50) to achieve ~ 400-kcal energy expenditure per trial. Acute RPE (i.e., during exercise) at 5 minutes, midway, and test termination were recorded with SRPE (20-minutes postexercise) expressed as overall (SRPEO), legs (SRPEL), and breathing also recorded were heart rate (HR) and change in rectal temperature (ΔTrec). Significance was accepted at p ≤ 0.05. Repeated-measures analysis of variance revealed significantly greater SRPE for higher intensities within each mode. Crossmodal comparisons also show a higher SRPE at moderate (75% VO2max) intensities [SRPEO] = BK75: 7.6 ± 1.0, TM75: 6.9 ± 1.3) vs. lower (50% VO2max) intensities (BK50: 4.6 ± 1.4, TM50: 4.6 ± 1.1). Within modes, SRPE corresponded well with ΔTrec and HR. Acute RPE was linked with intensity and drifted upward across time. Results indicated that overall and differentiated SRPEs are magnified with exercise intensity with the corresponding disruption in internal environment potentially mediating subjective responses. From a practical application standpoint, SRPE provides a subjective assessment for immediate evaluation of daily training. Results indicate that, when using SRPE to monitor training, consideration should be given to responses across differing exercise modes.  相似文献   

17.
Some recent studies of competitive athletes have shown exercise-induced hypoxemia to begin in submaximal exercise. We examined the role of ventilatory factors in the submaximal exercise gas exchange disturbance (GED) of healthy men involved in regular work-related exercise but not in competitive activities. From the 38 national mountain rescue workers evaluated (36 +/- 1 yr), 14 were classified as GED and were compared with 14 subjects matched for age, height, weight, and maximal oxygen uptake (VO2 max; 3.61 +/- 0.12 l/min) and showing a normal response (N). Mean arterial PO2 was already lower than N (P = 0.05) at 40% VO2 max and continued to fall until VO2 max (GED: 80.2 +/- 1.6 vs. N: 91.7 +/- 1.3 Torr). A parallel upward shift in the alveolar-arterial oxygen difference vs. %VO2 max relationship was observed in GED compared with N from the onset throughout the incremental protocol. At submaximal intensities, ideal alveolar PO2, tidal volume, respiratory frequency, and dead space-to-tidal volume ratio were identical between groups. As per the higher arterial PCO2 of GED at VO2 max, subjects with an exaggerated submaximal alveolar-arterial oxygen difference also showed a relative maximal hypoventilation. Results thus suggest the existence of a common denominator that contributes to the GED of submaximal exercise and affects the maximal ventilatory response.  相似文献   

18.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

19.
We have previously developed a unique and simple procedure for assessing cardiorespiratory fitness. The present investigation was conducted to evaluate whether an aerobic index determined by torque auto-controlled system with the feedback of photoelectric pulse could sufficiently approximate the cardiorespiratory fitness represented by anaerobic threshold (AT) and maximal oxygen uptake (VO2max). Analysis of the cross-sectional data indicated that the aerobic score (AS: K (WR/Wt)/HR; where WR = mean work rate during 12-min cycling, Wt = weight, and HR = mean heart rate during 12-min cycling) determined by the torque auto-controlled system was significantly correlated with directly measured VO2/AT (r = 0.922, 76 males; r = 0.814, 34 females). Cross-validity of the predicted VO2max from the AS was significant and sufficiently high (r = 0.949, 31 males) for use in the general public. In addition, the effects of cycling or jogging training on the AS were longitudinally investigated on 17 females and 1 male. Major effects of the training were significant improvements in the AS, VO2max, and VO2/AT. Delta percentage change [(post-value - pre-value)/pre-value; delta %] in the AS was closely associated (r = 0.718, 8 females) with delta % in VO2/AT. It appears likely from the present investigation that information obtained through the use of our unique system (i.e., the AS) could provide considerably reliable estimate of cardiorespiratory fitness in both males and females.  相似文献   

20.
The mechanisms responsible for the oxygen uptake (VO2) slow component during high-intensity exercise have yet to be established. In order to explore the possibility that the VO2 slow component is related to the muscle contraction regimen used, we examined the pulmonary VO2 kinetics during constant-load treadmill and cycle exercise at an exercise intensity that produced the same level of lactacidaemia for both exercise modes. Eight healthy subjects, aged 22-37 years, completed incremental exercise tests to exhaustion on both a cycle ergometer and a treadmill for the determination of the ventilatory threshold (defined as the lactate threshold, Th1a) and maximum VO2 (VO2max). Subsequently, the subjects completed two "square-wave" transitions from rest to a running speed or power output that required a VO2 that was halfway between the mode-specific Th1a and VO2max. Arterialised blood lactate concentration was determined immediately before and after each transition. The VO2 responses to the two transitions for each exercise mode were time-aligned and averaged. The increase in blood lactate concentration produced by the transitions was not significantly different between cycling [mean (SD) 5.9 (1.5) mM] and running [5.5 (1.6) mM]. The increase in VO2 between 3 and 6 min of exercise; (i.e. the slow component) was significantly greater in cycling than in running, both in absolute terms [290 (102) vs 200 (45) ml x min(-1); P<0.05] and as a proportion of the total VO2 response above baseline [10 (3)% vs 6 (1)%; P < 0.05]. These data indicate that: (a) a VO2 slow component does exist for high-intensity treadmill running, and (b) the magnitude of the slow component is less for running than for cycling at equivalent levels of lactacidaemia. The greater slow component observed in cycling compared to running may be related to differences in the muscle contraction regimen that is required for the two exercise modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号