首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of the three major catecholamine-synthesizing enzymes were determined in brain tissue pellets dissected from 500-micrometers thick horizontal sections of rat lower brainstem. The rostrocaudal distributions of the three enzymatic activities were generally not parallel, suggesting differences in the respective localization of the noradrenergic and adrenergic neurons. The difference was most important in the A2-C2 region where the maximal activity of phenylethanolamine-N-methyltransferase (EC 2.1.1.28) was located 1.5 mm more rostrally than the maximal activities of the tyrosine hydroxylase (EC 1.14.16.2) and dopamine beta-hydroxylase (EC1.14.17.1). This result indicates that a more specific dissection of the adrenergic and noradrenergic neurons could be performed in the A2-C2 area of the rat brainstem.  相似文献   

2.
Tyrosine hydroxylase activity correlated significantly with norepinephrine concentration and turnover, when results from regions containing predominantly noradrenergic terminals were compared, and with dopamine concentration and turnover when results from regions containing predominantly dopaminergic terminals were compared. Regions containing dopamine or norepinephrine cell bodies were characterized by higher tyrosine hydroxylase activities as compared to regions containing mostly nerve terminals. Higher levels of tyrosine hydroxylase activity and transmitter turnover were observed in regions containing dopaminergic terminals than in regions containing norepinephrine terminals. These findings are consistent with the view that tyrosine hydroxylase activity is linked to rates of catecholamine utilization by neurons in the CNS.  相似文献   

3.
4.
New information has accrued from in vivo microdialysis studies about stress-related changes in norepinephrine concentrations in extracellular fluid of the paraventricular nucleus (PVN) and the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Our data on the effects of lower brainstem hemisections show that paraventricular noradrenergic terminals are derived mainly from medullary A1 and A2 catecholaminergic cells. The activation of these cells contributes importantly to stress-induced noradrenergic activation in the paraventricular nucleus of conscious animals. The results from brainstem hemisection experiments also indicate that baseline levels and immobilization-induced increments in corticotropin-releasing hormone (CRH) mRNA expression in the PVN depend on ipsilaterally ascending medullary tract. Thus, the prevalent concept that stress-induced noradrenergic activation of the HPA axis depends mainly on activation of locus ceruleus noradrenergic neurons requires re-evaluation. Our new stress concepts favor stressor-specific activation of the HPA axis. The present data also suggest the existence of stressor-specific central pathways that differentially participate in the regulation of sympathoneuronal and adrenomedullary outflows as well as of the activity of the HPA axis. Furthermore, the results are inconsistent with a founding tenet of Selye's stress theory, the doctrine of nonspecificity, which defines stress as the nonspecific response of the body to any demand. We expect that future studies in this area will focus on further examination of the notion of stressor-specific patterns of central neurotransmitter release and elucidate the genetic bases of these patterns.  相似文献   

5.
6.
In this study, we investigated the effect of chronic repeated restraint (RR) on prolactin-releasing peptide (PrRP) expression. In the brainstem, where PrRP colocalize with norepinephrine in neurons of the A1 and A2 catecholaminergic cell groups, the expression of tyrosine hydroxylase (TH) has also been examined. In the brainstem, but not in the hypothalamus, the basal PrRP expression in female rats was higher than that in the males that was abolished by ovariectomy. RR evoked an elevation of PrRP expression in all areas investigated, with smaller reaction in the brainstems of females. There was no gender-related difference in the RR-evoked TH expression. Elevation of PrRP was relatively higher than elevation of TH, causing a shift in PrRP/TH ratio in the brainstem after RR. Estrogen α receptors were found in the PrRP neurons of the A1 and A2 cell groups, but not in the hypothalamus. Bilateral lesions of the hypothalamic paraventricular nucleus did not prevent RR-evoked changes. Elevated PrRP production parallel with increased PrRP/TH ratio in A1/A2 neurons indicate that: (i) there is a clear difference in the regulation of TH and PrRP expression after RR, and (ii) among other factors this may also contribute to the changed sensitivity of the hypothalamo-pituitary–adrenal axis during chronic stress.  相似文献   

7.
The spontaneously hypertensive rat (SHR) replicates many clinically relevant features of human essential hypertension and also exhibits behavioral symptoms of attention-deficit/hyperactivity disorder and dementia. The SHR phenotype is highly complex and cannot be explained by a single genetic or physiological mechanism. Nevertheless, numerous studies including our own work have revealed striking differences in central catecholaminergic transmission in SHR such as increased vesicular catecholamine content in the ventral brainstem. Here, we used immunolabeling followed by confocal microscopy and electron microscopy to quantify vesicle sizes and populations across three catecholaminergic brain areas—nucleus tractus solitarius and rostral ventrolateral medulla, both key regions for cardiovascular control, and the locus coeruleus. We also studied colocalization of neuropeptide Y (NPY) in norepinephrine and epinephrine-containing neurons as NPY is a common cotransmitter with central and peripheral catecholamines. We found significantly increased expression and coexpression of NPY in norepinephrine and epinephrine-positive neurons of locus coeruleus in SHR compared with Wistar rats. Ultrastructural analysis revealed immunolabeled vesicles of 150 to 650 nm in diameter (means ranging from 250 to 300 nm), which is much larger than previously reported. In locus coeruleus and rostral ventrolateral medulla, but not in nucleus tractus solitarius, of SHR, noradrenergic and adrenergic vesicles were significantly larger and showed increased NPY colocalization when compared with Wistar rats. Our morphological evidence underpins the hypothesis of hyperactivity of the noradrenergic and adrenergic system and increased norepinephrine and epinephrine and NPY cotransmission in specific brain areas in SHR. It further strengthens the argument for a prohypertensive role of C1 neurons in the rostral ventrolateral medulla as a potential causative factor for essential hypertension.  相似文献   

8.
Angiotensin II type 1 receptor-modulated signaling pathways in neurons   总被引:3,自引:0,他引:3  
Mammalian brain contains high densities of angiotensin II (Ang II) type 1 (AT1) receptors, localized mainly to specific nuclei within the hypothalamus and brainstem regions. Neuronal AT1 receptors within these areas mediate the stimulatory actions of central Ang II on blood pressure, water and sodium intake, and vasopressin secretion, effects that involve the modulation of brain noradrenergic pathways. This review focuses on the intracellular events that mediate the functional effects of Ang II in neurons, via AT1 receptors. The signaling pathways involved in short-term changes in neuronal activity, membrane ionic currents, norepinephrine (NE) release, and longer-term neuromodulatory actions of Ang II are discussed. It will be apparent from this discussion that the signaling pathways involved in these events are often distinct.  相似文献   

9.
The normal complement of neurotransmitters in noradrenergic neurons was altered by expressing the structural gene for the enzyme phenylethanolamine-N-methyltransferase (PNMT) under the control of the dopamine-beta-hydroxylase gene promoter in transgenic mice. This resulted in accumulation of large amounts of epinephrine in neurons of the sympathetic nervous system (SNS) and central nervous system (CNS) but did not reduce norepinephrine levels. Adrenalectomy reduced PNMT levels in the SNS and CNS, suggesting that the transgene is positively regulated by adrenal steroids. Epinephrine levels were unaffected by this treatment in the CNS, suggesting that PNMT is not rate limiting for epinephrine synthesis. However, catecholamines were elevated in a sympathetic ganglion and a target tissue of the SNS, perhaps due to up-regulation of tyrosine hydroxylase in response to adrenalectomy. These transgenic mice also reveal a marked difference in the ability of chromaffin cells and neurons to synthesize epinephrine.  相似文献   

10.
The incidence of fetal breathing movements and low voltage electrocortical activity was measured in three groups of fetal sheep, at 123-137 days gestation. The first group (transected & denervated) had the brainstem transected at the level of the colliculi and also had peripheral arterial chemodenervation. The second group (denervated) had a sham brain-stem transection and peripheral arterial chemodenervation. The third group (sham-operated) had sham brain-stem transection and sham peripheral chemodenervation. No differences were observed in the incidence of fetal breathing movements or low voltage electrocortical activity between the sham-operated and the denervated groups in normoxia, or in hypoxia when all these fetuses became apnoeic. There were however differences between these 2 groups and the transected & denervated group, in which fetal breathing movements where dissociated from electrocortical activity and which in some fetuses were continuous. During isocapnic hypoxia 3 of 8 transected & denervated fetuses made fetal breathing movements. We discuss the problems of interpreting data from brain-stem transected fetuses, but conclude that the evidence reveals no tonic influence of the peripheral arterial chemoreceptors on fetal breathing movements.  相似文献   

11.
The ablation of olfactory bulb induces critical changes in dopamine, and monoamine oxidase activity in the brain stem. Growing evidence supports the participation of this telencephalic region in the regulation blood pressure and cardiovascular activity but little is known about its contribution to hypertension. We have previously reported that in the olfactory bulb of normotensive rats endothelins enhance noradrenergic activity by increasing tyrosine hydroxylase activity and norepinephrine release. In the present study we sought to establish the status of noradrenergic activity in the olfactory bulb of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Different steps in norepinephrine transmission including tyrosine hydroxylase activity, neuronal norepinephrine release and uptake were assessed in the left and right olfactory bulb of DOCA-salt hypertensive rats. Increased tyrosine hydroxylase activity, and decreased neuronal norepinephrine uptake were observed in the olfactory bulb of DOCA-salt hypertensive rats. Furthermore the expression of tyrosine hydroxylase and its phosphorylated forms were also augmented. Intriguingly, asymmetrical responses between the right and left olfactory bulb of normotensive and hypertensive rats were observed. Neuronal norepinephrine release was increased in the right but not in the left olfactory bulb of DOCA-salt hypertensive rats, whereas non asymmetrical differences were observed in normotensive animals. Present findings indicate that the olfactory bulb of hypertensive rats show an asymmetrical increase in norepinephrine activity. The observed changes in noradrenergic transmission may likely contribute to the onset and/or progression of hypertension in this animal model.  相似文献   

12.
The olfactory system in rats is part of the limbic region with extensive afferent connections with brain areas involved in the regulation of behaviour and autonomic responses. The existence of the endothelin system and catecholaminergic neurons in the olfactory bulb suggests that endothelins may modulate noradrenergic transmission and diverse olfactory mediated processes. In the present work we studied the effect of endothelin-1 and -3 on neuronal norepinephrine release and the short-term regulation of tyrosine hydroxylase in the olfactory bulb. Results showed that both endothelins increased tyrosine hydroxylase activity through the activation of a non-conventional endothelin G-protein coupled receptor, coupled to the stimulation of protein kinase A and C, as well as Ca2+/calmodulin-dependent protein kinase II. On the other hand, neither endothelin-1 nor endothelin-3 modified tyrosine hydroxylase total protein levels, but both peptides increased the phosphorylation of serine residues of the enzyme at sites 19 and 40. Furthermore, endothelins enhanced norepinephrine release in olfactory neurons suggesting that this event may contribute to increased tyrosine hydroxylase activity by reducing the feedback inhibition. Taken together present findings show a clear interaction between the endothelin system, and the catecholaminergic transmission in the olfactory bulb. Additional studies are required to evaluate the physiological functions regulated by endothelins at this brain level.  相似文献   

13.
Phenylalanine hydroxylase in Reuber H4 hepatoma cell cultures can be rapidly inactivated by the addition of epinephrine, norepinephrine, dopamine, or 3,4-dihydroxyphenylalanine, in order of decreasing effectiveness, to the culture medium. The enzyme was 50% inactivated in 1 hour by 25 muM (R)-epinephrine or 45 muM (R)-norepinephrine in the medium. High concentrations of epinephrine caused a 70% inactivation in 15 min. Phenylalanine hydroxylase appears to be reversibly inactivated by epinephrine within the cells; since washing the compound off the cell cultures resulted in a rapid restoration of enzyme activity (40% in 1 hour), cycloheximide had little effect on the initial rate of recovery of enzyme activity and the same amount of phenylalanine hydroxylase antigen per cell was isolated from treated and normal cultures. Both (S)- and (R)-epinephrine inactivated the enzyme, and 0.1 mM desmethylimipramine, an inhibitor of amine transport, significantly decreased the effect of epinephrine on the hydroxylase activity. The possibility, suggested by the above results, that epinephrine might be directly inactivating phenylalanine hydroxylase within the cells was supported by the finding that purified rat liver phenylalanine hydroxylase would be 50% inactivated by 1.5 muM epinephrine in 10 min.  相似文献   

14.
Onal A  Delen Y  Ulker S  Soykan N 《Life sciences》2003,73(4):413-428
Effect of agmatine (10-400 mg/kg) on neuropathic pain in a rat model produced by loose ligatures around the common sciatic nerve was studied. The involvement of possible alterations in nitric oxide (NO) levels [measured as its stable metabolites nitrate + nitrite] and in noradrenergic activity [measured as norepinephrine and 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) levels] in this effect was also investigated biochemically in the brainstem and cerebellum. Agmatine increased the neuropathic pain threshold at 300 and 400 mg/kg. There was almost a twofold increase in nitrate + nitrite levels in the brainstem and cerebellum of the rats with neuropathic pain and agmatine decreased the high nitrate + nitrite levels only in the brainstem at 300 mg/kg and both in the brainstem and cerebellum at 400 mg/kg. Ligation of sciatic nerve resulted in almost twofold increase in norepinephrine and MHPG levels only in the brainstem of the rats. Agmatine decreased MHPG levels at 300 and 400 mg/kg, however it decreased norepinephrine levels only at the higher dose. These findings indicate that agmatine decreases neuropathic pain, an effect which may involve the reduction of NO levels and noradrenergic activity in the brain.  相似文献   

15.
Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine-beta-hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In situ hybridization was combined with serotonin (5-hydroxytryptamine, 5-HT) or tyrosine hydroxylase immunocytochemistry and with Fluoro-Gold retrograde labeling of bulbo-spinal pathways in order to investigate the expression of GAP-43 mRNA in monoamine cell groups of the adult rat brain stem. Consistent with previous reports, GAP-43 mRNA was observed in serotonin and dopamine cell groups in the pons. In addition, GAP-43 expressing cells were observed in all the major monoamine cell groups in the medulla. Thus the B1, B2 and B3 serotonin cell groups all showed high GAP-43 expression and all contained many GAP-43 expressing serotonin cells with spinal cord projections. The A1, A2, A5 and A6 noradrenalin cell groups also showed high GAP-43 expression, although cells with spinal cord projections were largely restricted to the A5 group and A6 subcoeruleus region. In all areas, GAP-43 expressing cells with spinal cord projections were also observed which were not serotonergic or noradrenergic.  相似文献   

17.
A rapid and reliable method for determination of in vivo activities of tyrosine hydroxylase in the rat adrenal gland is presented. This method involves determining the rate of accumulation of 3,4-dihydroxyphenylalanine (Dopa) in the adrenal gland after decarboxylase inhibition by NSD 1015, using HPLC with electrochemical detection after purification of the acid-deproteinized tissue extract with Bio-Rex 70 columns followed by alumina batch method. Purification of the sample with alumina adsorption alone, a method usually used for purification of catecholamines and Dopa, was ineffective: epinephrine and norepinephrine, which are present in high concentrations, interfered with an accurate determination of Dopa, and dopamine, which is retained strongly on the reverse-phase column, interfered with a rapid analysis. Purification with Sephadex G-10 columns followed by alumina adsorption was also ineffective. After purification with columns of weak cation-exchange resins such as Bio-Rex 70 or Amberlite CG-50 followed by alumina adsorption, most of the epinephrine and norepinephrine was removed and dopamine was eliminated. Thus a rapid and accurate determination of Dopa could be made. Of the two cation exchangers, Bio-Rex 70 was more effective. Accumulation of Dopa in the adrenal gland was linear up to 30 min after administration of NSD 1015 and a plateau was reached with doses over 10 mg/kg. Using this method, we investigated the effects of immobilization stress, reserpine, and hypoxia on in vivo activities of tyrosine hydroxylase in the adrenal gland.  相似文献   

18.
Chronic nicotine (0.8 mg/kg by daily subcutaneous injection) over a 7 to 28-day period was found to increase the activity of tyrosine hydroxylase in predominantly noradrenergically innervated regions but not in dopaminergic projection areas. Increases in tyrosine hydroxylase activity were observed in dopaminergic cell body regions only after nicotine treatment for 3 to 5 days. The increase in tyrosine hydroxylase activity in noradrenergic neurones was evident first in the cell bodies in the locus coeruleus from 3 to 7 days, reaching 223% of control activities, and was followed by increases of up to 205% in the terminals up to 3 weeks later. It was then established that nicotine for 7 days was sufficient to increase the activity of the enzyme to the same extent in the terminals at 21 days even without further nicotine administration. This is consistent with axonal transport preceded by induction of the enzyme in noradrenergic cell bodies, whereas "delayed activation" might account for the transient effect seen in dopaminergic cell body regions. The response in the locus coeruleus to nicotine for 7 days was completely blocked by daily preinjection with mecamylamine but not with hexamethonium, which is consistent with the effect of nicotine on tyrosine hydroxylase being mediated by central nicotinic receptors.  相似文献   

19.
Catecholaminergic metabolism was estimated in A1 and A2 noradrenergic nuclei of the rat medulla oblongata using differential normal pulse voltammetry combined with electrochemically treated carbon fiber microelectrodes. In both areas an oxidation peak appearing at +50 mV was recorded. Electrochemical data and pharmacological experiments indicated that 3,4-dihydroxyphenylacetic acid (DOPAC) synthesized by noradrenergic neurons was the major contributor to this signal. Indeed, alpha-methyl-p-tyrosine, by inhibiting tyrosine hydroxylase, and pargyline, by inhibiting monoamine oxidase, both totally suppressed the peak appearing at +50 mV in A1 and A2 areas. Conversely, FLA-63, an inhibitor of dopamine-beta-hydroxylase, increased it. Moreover, a local and unilateral injection of catecholaminergic neurotoxin (6-hydroxydopamine) in the vicinity of A1 induced a 60% decrease in the peak height. This effect was prevented by pretreatment with desipramine, an inhibitor of noradrenaline reuptake, which is known to protect noradrenergic neurons against the action of 6-hydroxydopamine. Finally, specific drugs acting on alpha-2-noradrenergic receptors (clonidine and piperoxane) modulated the peak height recorded from both structures. Thus, as previously shown in the locus ceruleus, the variations in the extracellular DOPAC levels reflect the metabolic activity of A1 and A2 noradrenergic neurons.  相似文献   

20.
The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH2-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号