首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
G.U wobble pairs are crucial to many examples of RNA-protein recognition. We previously concluded that the G.U wobble pair in the acceptor helix of Escherichia coli alanine tRNA (tRNA(Ala)) is recognized indirectly by alanyl-tRNA synthetase (AlaRS), although direct recognition may play some role. Our conclusion was based on the finding that amber suppressor tRNA Ala with G.U shifted to an adjacent helical site retained substantial but incomplete Ala acceptor function in vivo. Other researchers concluded that only direct recognition is operative. We report here a repeat of our original experiment using tRNA(Lys) instead of tRNA(Ala). We find, as in the original experiment, that a shifted G.U confers Ala acceptor activity. Moreover, the modified tRNA(Lys) was specific for Ala, corroborating our original conclusion and making it more compelling.  相似文献   

5.
The 1H, 13C, and 15N NMR spectra of neutral and protonated forms of the nucleosides 1-methyladenosine (m1A), 7-methylguanosine (m7G) and ethenoadenosine (EA), as a model compound, have been analyzed in order to assign the site of protonation in m1A and m7G. Protonation of these nucleosides occurs in the pyrimidine ring of m1A and EA and in the imidazole ring of m7G, with the charge being distributed rather than localized. Structural differences for both m1A and m7G were observed in solution and compared with those existing in the crystal state of monomers as well as in tRNA where these nucleosides occur quite often. The protonated nucleoside structures in solution compared favorably in sugar pucker and glycosidic bond conformations with x-ray crystallographic data. Methyl group carbon chemical shifts of the protonated mononucleosides corresponded to those of the methyls of the respective nucleosides in native tRNA structures. Therefore, the tRNA methyl group carbon chemical shifts are indicative of fully protonated nucleosides in the native, three dimensional structure of the nucleic acid.  相似文献   

6.
Binding of transfer RNA (tRNA) to the ribosome involves crucial tRNA-ribosomal RNA (rRNA) interactions. To better understand these interactions, U33-substituted yeast tRNA(Phe) anticodon stem and loop domains (ASLs) were used as probes of anticodon orientation on the ribosome. Orientation of the anticodon in the ribosomal P-site was assessed with a quantitative chemical footprinting method in which protection constants (Kp) quantify protection afforded to individual 16S rRNA P-site nucleosides by tRNA or synthetic ASLs. Chemical footprints of native yeast tRNA(Phe), ASL-U33, as well as ASLs containing 3-methyluridine, cytidine, or deoxyuridine at position 33 (ASL-m3U33, ASL-C33, and ASL-dU33, respectively) were compared. Yeast tRNAPhe and the ASL-U33 protected individual 16S rRNA P-site nucleosides differentially. Ribosomal binding of yeast tRNA(Phe) enhanced protection of C1400, but the ASL-U33 and U33-substituted ASLs did not. Two residues, G926 and G1338 with KpS approximately 50-60 nM, were afforded significantly greater protection by both yeast tRNA(Phe) and the ASL-U33 than other residues, such as A532, A794, C795, and A1339 (KpS approximately 100-200 nM). In contrast, protections of G926 and G1338 were greatly and differentially reduced in quantitative footprints of U33-substituted ASLs as compared with that of the ASL-U33. ASL-m3U33 and ASL-C33 protected G530, A532, A794, C795, and A1339 as well as the ASL-U33. However, protection of G926 and G1338 (KpS between 70 and 340 nM) was significantly reduced in comparison to that of the ASL-U33 (43 and 61 nM, respectively). Though protections of all P-site nucleosides by ASL-dU33 were reduced as compared to that of the ASL-U33, a proportionally greater reduction of G926 and G1338 protections was observed (KpS = 242 and 347 nM, respectively). Thus, G926 and G1338 are important to efficient P-site binding of tRNA. More importantly, when tRNA is bound in the ribosomal P-site, G926 and G1338 of 16S rRNA and the invariant U33 of tRNA are positioned close to each other.  相似文献   

7.
8.
The structure of tRNA 5 Lys from Drosophila melanogaster.   总被引:2,自引:2,他引:0       下载免费PDF全文
The nucleotide sequence of Drosophila melanogaster tRNA 5 Lys is pGCCCGGAUAm2GCUCAGDCGGDAGAGCA psi psi GGACUsU*UUt6A*A psi CCAAGGm7GDm5CCAGGGTm psi CAm1AGUCCCUGUUCGGGCGCCA. The sU* is probably 5-methylcarboxymethyl-2-thiouridine and t6A* is a mixture of modified derivatives of t6A including t6A itself and a component sensitive to treatment with cyanogen bromide. This tRNA 5 Lys is 95% homologous to the rabbit liver tRNA 5 Lys.  相似文献   

9.
10.
11.
12.
Previous nuclear magnetic resonance (NMR) studies of unmodified and pseudouridine39-modified tRNA(Lys) anticodon stem loops (ASLs) show that significant structural rearrangements must occur to attain a canonical anticodon loop conformation. The Escherichia coli tRNA(Lys) modifications mnm(5)s(2)U34 and t(6)A37 have indeed been shown to remodel the anticodon loop, although significant dynamic flexibility remains within the weakly stacked U35 and U36 anticodon residues. The present study examines the individual effects of mnm(5)s(2)U34, s(2)U34, t(6)A37, and Mg(2+) on tRNA(Lys) ASLs to decipher how the E. coli modifications accomplish the noncanonical to canonical structural transition. We also investigated the effects of the corresponding human tRNA(Lys,3) versions of the E. coli modifications, using NMR to analyze tRNA ASLs containing the nucleosides mcm(5)U34, mcm(5)s(2)U34, and ms(2)t(6)A37. The human wobble modification has a less dramatic loop remodeling effect, presumably because of the absence of a positive charge on the mcm(5) side chain. Nonspecific magnesium effects appear to play an important role in promoting anticodon stacking. Paradoxically, both t(6)A37 and ms(2)t(6)A37 actually decrease anticodon stacking compared to A37 by promoting U36 bulging. Rather than stack with U36, the t(6)A37 nucleotide in the free tRNAs is prepositioned to form a cross-strand stack with the first codon nucleotide as seen in the recent crystal structures of tRNA(Lys) ASLs bound to the 30S ribosomal subunit. Wobble modifications, t(6)A37, and magnesium each make unique contributions toward promoting canonical tRNA structure in the fundamentally dynamic tRNA(Lys)(UUU) anticodon.  相似文献   

13.
The crystal structure of a self-complementary RNA duplex r(GGGCGCUCC)2with non-adjacent G*U and U*G wobble pairs separated by four Watson-Crick base pairs has been determined to 2.5 A resolution. Crystals belong to the space group R3; a = 33.09 A,alpha = 87.30 degrees with a pseudodyad related duplex in the asymmetric unit. The structure was refined to a final Rworkof 17.5% and Rfreeof 24.0%. The duplexes stack head-to-tail forming infinite columns with virtually no twist at the junction steps. The 3'-terminal cytosine nucleosides are disordered and there are no electron densities, but the 3' penultimate phosphates are observed. As expected, the wobble pairs are displaced with guanine towards the minor groove and uracil towards the major groove. The largest twist angles (37.70 and 40.57 degrees ) are at steps G1*C17/G2*U16 and U7*G11/C8*G10, while the smallest twist angles (28.24 and 27.27 degrees ) are at G2*U16/G3*C15 and C6*G12/U7*G11 and conform to the pseudo-dyad symmetry of the duplex. The molecule has two unequal kinks (17 and 11 degrees ) at the wobble sites and a third kink at the central G5 site which may be attributed to trans alpha (O5'-P), trans gamma (C4'-C5') backbone conformations. The 2'-hydroxyl groups in the minor groove form inter-column hydrogen bonding, either directly or through water molecules.  相似文献   

14.
15.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

16.
17.
The nucleotide sequence of tyrosine tRNAQ* psi A from bovine liver   总被引:2,自引:0,他引:2  
The nucleotide sequence of tyrosine tRNAQ* psi A from bovine liver was determined to be pC-C-U-U-C-m2G-A-U-A-m2G-C-U-C-A-G-D-D-G-G-acp3U-A-G-A -G-C-m22G-m22G -A-G-G-A-C-U-Q*-psi-A-m1G-A-psi m-C-C-U-U-A-G-m7G-D-m5C-G-C-U-G-G-T-psi-C-G-m1A -U-U-C-C-G-G-C-U-C-G-A-A-G-G-A-C-C-AOH. This tyrosine tRNA is 76 nucleotides in length, and contains two hypermodified nucleosides--3 -3(3-amino-3-carboxylpropyl)uridine (acp3U) and beta-D-galactosylqueuosine (Q*). The molecule also has a pseudouridine in the middle position of the anticodon, and is the first tRNA sequenced which has an adjacent pair of N2,N2-dimethylguanosine (m22G) residues.  相似文献   

18.
19.
The nucleoside composition of tRNA from highly purified yeast mitochondria shows the presence of T, ψ, hU, m1G, m2G, m22G, I and t6A whereas neither m7G, m5C, m3C, m1A, i6A and Y nor O′-methylated nucleosides (which are common in yeast cytoplasmic tRNA) were found. The G+C content is very low (35%). The overall methylation content is 2.7% which is about half the content of yeast cytoplasmic tRNA but similar to that of E. coli tRNA. Some rare nucleosides however which are found in E. coli (s4U, acp3U, m2A, m6A, ms2i6A, Q) were not found in yeast mitochondrial tRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号