首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review attempted to follow the establishment of a novel branch of biology arisen at the interfaces between plant physiology, biochemistry, and molecular biology—plant anaerobic stress. Most attention was given to the early period of these investigations, the activity of the members of International Society for Plant Anaerobiosis in particular, and the contribution of Russian scientists, who played a significant role at that time in the establishment and international recognition of this new trend. In this connection, the following points are considered: (1) Crawford's metabolic theory, which could not withstand experimental verification but induced an active discussion, thus stimulating further investigations in this field; (2) a concept of two main strategies of plant adaptation to anaerobic stress (true and apparent adaptation), which was put forward based on the following experimental data: (a) a discovery of a paradoxical phenomenon of hyper-sensitivity, but not hyper-resistance to anoxia, of the flood-tolerant plant roots (“apparent” tolerance); (b) the elucidation of the physiological role of oxygen transported from aerated organs of flood-tolerant plants to the roots inhabiting anaerobic environment; (c) demonstration of the key role of both energy metabolism, and (d) substrate providing for glycolysis and ethanolic fermentation in plants manifesting “true” tolerance to oxygen deprivation; (3) the discovery of plant stress proteins; and finally (4) pH-stat theory put forward by Davies.  相似文献   

2.
This article reviews the contribution made by functional electronmicroscopy towards identifying and understanding the reactionsof plant roots and shoots to anaerobic stress. Topics examinedinclude: (1) unexpected hypersensitivity, rather than hyper-resistance,to anoxia of root tips of flooding-tolerant plants; (2) protective,rather than damaging, effects of a stimulated energy metabolism(glycolysis and fermentation) under anaerobic conditions; (3)the concept of two main strategies of plant adaptation to anaerobicenvironments, namely avoidance of anaerobiosis on the wholeplant level, termed ‘apparent’ tolerance, and metabolicadaptation at the cellular and molecular levels, termed ‘true’tolerance; (4) the importance of protein synthesis during hypoxiaand anoxia for enhanced energy production and metabolic adaptation;(5) a general adaptive syndrome in plants to stress at the ultrastructurallevel and a possible molecular mechanism for its realizationunder anoxia; (6) the physiological role of anaerobically synthesizedlipids and nitrate as alternative electron acceptors in an oxygen-freemedium; and (7) the selection of cell lines derived from calluscultures that possess enhanced tolerance to anoxia and can regeneratewhole plants with improved tolerance of soil waterlogging.  相似文献   

3.
Tolerance of anoxia in maize root tips is greatly improved when seedlings are pretreated with 2 to 4 h of hypoxia. We describe the patterns of protein synthesis during hypoxic acclimation and anoxia. We quantified the incorporation of [(35)S]methionine into total protein and 262 individual proteins under different oxygen tensions. Proteins synthesized most rapidly under normoxic conditions continued to account for most of the proteins synthesized during hypoxic acclimation, while the production of a very few proteins was selectively enhanced. When acclimated root tips were placed under anoxia, protein synthesis was depressed and no "new" proteins were detected. We present evidence that protein synthesis during acclimation, but not during subsequent anoxia, is crucial for acclimation. The complex and quantitative changes in protein synthesis during acclimation necessitate identification of large numbers of individual proteins. We show that mass spectrometry can be effectively used to identify plant proteins arrayed by two-dimensional gel electrophoresis. Of the 48 protein spots analyzed, 46 were identified by matching to the protein database. We describe the expression of proteins involved in a wide range of cellular functions, including previously reported anaerobic proteins, and discuss their possible roles in adaptation of plants to low-oxygen stress.  相似文献   

4.
Physiology and biochemistry of waterlogging tolerance in plants   总被引:7,自引:2,他引:5  
Waterlogging is a serious problem, which affects crop growth and yield in low lying rainfed areas. The main cause of damage under waterlogging is oxygen deprivation, which affect nutrient and water uptake, so the plants show wilting even when surrounded by excess of water. Lack of oxygen shift the energy metabolism from aerobic mode to anaerobic mode. Plants adapted to waterlogged conditions, have mechanisms to cope with this stress such as aerenchyma formation, increased availability of soluble sugars, greater activity of glycolytic pathway and fermentation enzymes and involvement of antioxidant defence mechanism to cope with the post hypoxia/anoxia oxidative stress. Gaseous plant hormone ethylene plays an important role in modifying plant response to oxygen deficiency. It has been reported to induce genes of enzymes associated with aerenchyma formation, glycolysis and fermentation pathway. Besides, nonsymbiotic-haemoglobins and nitric oxide have also been suggested as an alternative to fermentation for maintaining lower redox potential (low NADH/NAD ratio), and thereby playing an important role in anaerobic stress tolerance and signaling.  相似文献   

5.
Hypoxically induced tolerance to anoxia in roots of tomato (Solanum lycopersicum) was previously shown to depend on sucrose and the induction of sucrose synthase. In contrast to maize, root hexokinase (HXK) activities did not increase during hypoxia and glucose was unable to sustain glycolytic flux under anoxia. In this paper, we asked whether hypoxic metabolism in roots would be altered in transgenic tomato plants overexpressing either a plant (Arabidopsis) or a yeast (Saccharomyces cerevisiae) HXK and whether such modifications could be related to improved energy metabolism and consequently root tolerance under anoxia. Tomato plants grown hydroponically with shoots always maintained in air were submitted to a 7 d hypoxic treatment applied by stopping air bubbling. A combination of techniques including (1)H-nuclear magnetic resonance spectroscopy, RT-PCR and enzyme analyses was used to obtain a broad picture of hypoxic root metabolism. In normoxic conditions, HXK overexpression resulted in higher ADP and AMP levels only in roots of AtHXK1 transgenic plants. During hypoxic treatment, oxygen levels in the hydroponic tank decreased rapidly to 5 kPa within the first 2 d and then remained at 5 kPa throughout the 7 d experiment. Oxygen levels were similar at 5 and 20 cm below the water surface. A decline of the adenylate energy status was observed after 2 d of hypoxic treatment, with a further decrease by 7 d in roots of non-transgenic (WT) and ScHXK2, but not in AtHXK1 transgenic plants. Sucrose synthase activity increased to comparably higher levels at 7 d of hypoxic treatment in WT and ScHXK2 compared with AtHXK1 roots. Differences between WT and the transgenic plants are discussed with respect to the metabolic response to low (hypoxia) but not zero (anoxia) oxygen.  相似文献   

6.
Fish cover a large size range, from milligrams to tonnes, and many of them are regularly exposed to large variations in ambient oxygen levels. For more than half a century, there have been various, often divergent, claims regarding the effect of body size on hypoxia tolerance in fish. Here, we attempt to link old and new empirical data with the current understanding of the physiological mechanisms behind hypoxia tolerance. Three main conclusions are drawn: (1) body size per se has little or no impact on the ability to take up oxygen during hypoxic conditions, primarily because the respiratory surface area matches metabolic rate over a wide size range. If size-related differences are seen in the ability for oxygen uptake in a species, these are likely to reflect adaptation to different life-styles or habitat choice. (2) During severe hypoxia and anoxia, where fish have to rely on anaerobic ATP production (glycolysis) for survival, large individuals have a clear advantage over smaller ones, because small fish will run out of glycogen or reach lethal levels of anaerobic end-products (lactate and H(+)) much faster due to their higher mass-specific metabolic rate. (3) Those fish species that have evolved extreme adaptations to hypoxia, including haemoglobins with exceptionally high oxygen affinities and an alternative anaerobic end-product (ethanol), reveal that natural selection can be a much more powerful determinant of hypoxia tolerance than scaling of physiological functions.  相似文献   

7.
This paper is dedicated to the 35 year jubilee of the founding and the activity of the International Society for Plant Anaerobiosis (ISPA). The role of ISPA members in opening new avenues of research is emphasized. Major developments in the study of plant hypoxic and anoxic stress achieved during subsequent decades are considered. Special attention is given to plant adaptation and damage under conditions of oxygen deficiency and complete absence of oxygen as well as during the post-anaerobic period. Plant metabolic adaptation to anaerobic stress and the capacity of some plants to avoid anaerobiosis are discussed.  相似文献   

8.
9.
Generation of reactive oxygen species (ROS) and activities of antioxidant enzymes (catalase, peroxidase, ascorbate peroxidase) in pea (Pisum sativum L.) and soybean (Glycine max L.) under hypoxia (3–24 h) and high CO2 concentration in medium were studied. In sensitive to hypoxia pea seedlings, hypoxia enhanced markedly production of superoxide anion-radical, hydroperoxides, and especially hydrogen peroxide. In more tolerant soybean plants, these changes were less pronounced. During first hours of hypoxia, activity of lipoxygenase in plant cells increased. This allows a suggestion that this enzyme is involved in the processes of hydroperoxide accumulation in plant tissues under oxygen deficit. In pea and soybean plants, a correlation between tolerance to hypoxia, the rate of ROS generation, and antioxidant enzyme activities was established. During the first hours of hypoxia, the catalase activity in soybean plants increased stronger than in sensitive to hypoxia pea plants. At longer exposure to hypoxia (24 h), peroxidases started to play the higher role in cell defense against hypoxia, but only in soybean plants. The medium with the higher CO2 content induced higher changes in the processes of ROS accumulation and activities of lipoxygenase and antioxidant enzymes. This permits us to refer CO2, accumulated as a product of respiration in the cells, to low-molecular signal molecules switching on plant adaptation to hypoxic stress.  相似文献   

10.
11.
12.
In Arctica islandica, a long lifespan is associated with low metabolic activity, and with a pronounced tolerance to low environmental oxygen. In order to study metabolic and physiological responses to low oxygen conditions vs. no oxygen in mantle, gill, adductor muscle and hemocytes of the ocean quahog, specimens from the German Bight were maintained for 3.5 days under normoxia (21 kPa=controls), hypoxia (2 kPa) or anoxia (0 kPa). Tissue levels of anaerobic metabolites octopine, lactate and succinate as well as specific activities of octopine dehydrogenase (ODH) and lactate dehydrogenase (LDH) were unaffected by hypoxic incubation, suggesting that the metabolism of A. islandica remains fully aerobic down to environmental oxygen levels of 2 kPa. PO(2)-dependent respiration rates of isolated gills indicated the onset of metabolic rate depression (MRD) below 5 kPa in A. islandica, while anaerobiosis was switched on in bivalve tissues only at anoxia. Tissue-specific levels of glutathione (GSH), a scavenger of reactive oxygen species (ROS), indicate no anticipatory antioxidant response takes place under experimental hypoxia and anoxia exposure. Highest specific ODH activity and a mean ODH/LDH ratio of 95 in the adductor muscle contrasted with maximal specific LDH activity and a mean ODH/LDH ratio of 0.3 in hemocytes. These differences in anaerobic enzyme activity patterns indicate that LDH and ODH play specific roles in different tissues of A. islandica which are likely to economize metabolism during anoxia and reoxygenation.  相似文献   

13.
在部控制氧下比较4种不同耐渍基因型芝麻的形态,生理指数及营养器官矿质元素含量变化。结果表明,耐渍品种种野芝7号与豫芝1号不定根条数增加4-5倍,净光合速率(Ph)下降幅度小,ADH活性增加约2倍,根据Ca,P含量显著升高,K降幅较小,根中其元素以及茎、叶中8种元素呈下降趋势。非耐渍品种丹巴格与遂平小籽黄,不定根条数无明显增加,Pn下降50%-60%,ADH活性可升高5-9倍;根中Ca,P含量亦增高,K下降较多,耐渍基因型有明显的结构适应特征,厌氧代谢的能量补偿作用相对次要,Ca,P在芝麻对厌氧胁迫的生理适应中起重要作用。  相似文献   

14.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   

15.
16.
Hypoxic tumours have the worst prognosis because they are the most aggressive and the most likely to metastasize. This may be because these aggressive cancers have a hypoxic core which generates signals that activate angiogenesis which enables the supply of nutrients and oxygen to a rapidly growing outer oxidative shell. The hypoxic core is a crucial element of this hypothesis, as is the fact that the cells in the hypoxic core are inherently adapted to survive hypoxia. We reasoned therefore that cancer cells exposed to hypoxia/anoxia should show the hallmarks of adaptation to hypoxia/anoxia, i.e. a down-regulation of protein synthesis and a reverse Pasteur effect. We tested this hypothesis in transformed (MCF-7) and normal (HME) human mammary epithelial cells, by exposing both cell types to a range of oxygen concentrations, including anoxia. We find that indeed protein synthesis is down-regulated in the MCF-7, but not in the HME cells in response to anoxia. The data on glycolysis are not as clear-cut, but in the light of similar previous measurements on hypoxia-tolerant animals, is still consistent with the hypothesis.  相似文献   

17.
18.
The study investigates the reactions of rice, wheat and maize to anoxia (plants without access to oxygen) and hypoxia (roots with very limited access to oxygen). We studied the adaptations of these intact crop plants because they are known to differ widely in their tolerance to oxygen deficiency. In hypoxia, there was an accumulation of sugars, especially in wheat and maize, although both flood-sensitive species significantly increased the activities of fermentative and glycolytic enzymes, clearly more than in rice. In rice, avoiding an oxygen limitation due to the effective aeration system (30% of root cross-sectional area) may have accounted for only a minor metabolic reaction to hypoxia. In anoxia, maize and wheat quickly lost viability and nearly all photosynthetic capacity, while most rice leaves stayed turgid and green, losing only 50% of the photosynthetic capacity. A strong metabolic arrest under anoxia was obvious for the sucrolytic, glycolytic and fermentative enzymes in all tested species, but was most pronounced in rice. Of the 14 enzymes studied, rice showed the lowest activity increase in hypoxia for 11 enzymes, and the strongest activity decrease in anoxia for 8 enzymes. However, rice was able even under anoxia to keep a 1/4 of the ATP level of the aerated control, while it was at the detection limit in maize and wheat. It appears that in anoxic rice, the switch to metabolic dormancy and maintenance of basic shoot meristems diminishes the needs for energy and substrate. Additionally, rice already has lower sugar demand under hypoxia, and sugar supply appears to be sustained under anoxia by a functioning anaerobic amylase and by the photosynthetically active shoot.  相似文献   

19.
It is now known that there are several classes of haemoglobins in plants. A specialized class of haemoglobins, symbiotic haemoglobins, were discovered 62 years ago and are found only in nodules of plants capable of symbiotic nitrogen fixation. Plant haemoglobins, with properties distinct from symbiotic haemoglobins were discovered 18 years ago and are now believed to exist throughout the plant kingdom. They are expressed in different organs and tissues of both dicot and monocot plants. They are induced by hypoxic stress and by oversupply of certain nutrients. Most recently, truncated haemoglobins have been shown to also exist in plants. While hypoxic stress‐induced haemoglobins are widespread in the plant kingdom, their function has not been elucidated. This review discusses the recent findings regarding the function of these haemoglobins in relation to adaptation to hypoxia in plants. We propose that nitric oxide is an important metabolite in hypoxic plant cells and that at least one of the functions of hypoxic stress‐induced haemoglobins is to modulate nitric oxide levels in the cell.  相似文献   

20.
氧气是哺乳动物机体代谢稳态维持的物质基础,若代谢过程中氧气供给不足,可造成低氧应激。目前,环境低氧、代谢性低氧和携氧细胞功能障碍是造成动物低氧应激的重要成因。目前,低氧对动物机体代谢和组织功能的影响研究主要集中于肺脏、肝脏、消化道、肌肉和乳腺等部位。若处于低氧状态的哺乳动物形成了适应低氧的代谢模式,则可维持其代谢稳态;相反,若动物无法维持低氧状态下的代谢稳态,则会导致机体氧化应激甚至病变。目前,低氧应激在家畜方面的研究主要集中于高原动物代谢适应机制;然而,泌乳期动物机体代谢速率、氧气消耗和自由基水平均较高,但氧在泌乳动物代谢应激形成中的作用及其对泌乳性能的影响,仍有待探索。综述了哺乳动物产生低氧应激的代谢成因与作用结果,旨在探讨哺乳动物低氧应激生物学基础,为进一步从低氧应激调控角度为泌乳动物的健康状况维持提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号