首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cigarette smoke induces a multitude of bulky/aromatic DNA adducts in vivo as revealed by 32P-postlabeling assay. The formation of such adducts is thought to involve metabolic activation of aromatic chemicals especially polycyclic aromatic hydrocarbons (PAHs) present in tumor-initiating cigarette tar fractions, via cytochrome P450-associated monooxygenases. Because radicals are present in both the gas and particulate (tar) phase of cigarette smoke and in aqueous extracts of cigarette smoke condensate (CSC), we addressed the question as to whether cytochrome P450-independent, possibly free radical-mediated reactions may contribute, also, to formation of cigarette smoke-associated bulky DNA adducts. Rat-lung DNA was incubated with aqueous extracts of CSC in the absence of microsomes under various conditions and analyzed by 32P-postlabeling. Radioactively labeled bulky reaction products were found to accumulate in a time- and CSC concentration-dependent manner. The resulting chromatographic profiles resembled cigarette smoke-associated DNA-adduct patterns observed in vivo. Pretreatment of aqueous CSC extract with radical scavengers/reducing agents (ascorbic acid, glutathione) diminished adduct formation in a concentration-dependent manner. Adduct formation in vitro may involve oxygen-free radicals, which are known to be present in aqueous CSC extracts and could (i) attack DNA directly to produce bulky adducts, (ii) induce radical sites on DNA covalently binding CSC components, or (iii) convert CSC components to DNA-reactive electrophiles. In addition, DNA may react with direct-acting mutagens in CSC. Adduct fractions derived from in vitro and in vivo experiments showed similar chromatographic behavior, suggesting that metabolic activation as well as processes not involving metabolism lead to formation of smoking-induced bulky DNA adducts in vivo.  相似文献   

2.
7H-Dibenzo[c,g]carbazole, DBC, is a potent environmental liver carcinogen. Liver DNA from mice treated with DBC exhibited seven distinct DBC-DNA adducts as detected by 32P-postlabeling using multidimensional TLC. To improve quantitation and chemically characterize the adducts, DNA samples were hydrlyzed, 32P-postlabeled and the adducts were separated from the unadducted normal nucleotides on TLC using a D1 solvent, 0.65 M sodium phosphate (pH 6.8). Adducts were eluted from the TLC plates with 4.0 M pyridinium formate, concentrated, resuspended in 50% aqueous methanol and injected onto the HPLC; five individual adduct peaks were resolved and collected by this method. This approach will prove useful to decrease analysis time and improve chemical characterization of tightly clustered DNA adducts generated in vivo.  相似文献   

3.
Differences between tissues in the expression of drug-metabolizing enzymes may substantially contribute to tissue-specificity of chemical carcinogens. To verify this hypothesis, the spontaneously immortalized human keratinocytes HaCaT were used, in order to evaluate the genotoxic potential of 7H-dibenzo[c,g]carbazole (DBC), a known hepatocarcinogen and sarcomagen, and its synthetic tissue-specific derivatives, 5,9-dimethyl-DBC (DiMeDBC) and N-methyl-DBC (N-MeDBC), which manifest specific tropism to the liver and skin, respectively. HaCaT cells mainly express cytochrome P4501A1 (CYP1A1), which is involved in metabolism of DBC and N-MeDBC, but not DiMeDBC [10]. Both DBC and the sarcomagen N-MeDBC induced significant levels of DNA strand-breaks, micronuclei, and DNA adducts followed by the phosphorylation of the p53 protein and histone H2AX in HaCaT cells. In contrast, the specific hepatocarcinogen DiMeDBC was devoid of any significant genotoxic activity in this cell line. Our study demonstrates that the absence of drug-metabolizing enzyme(s) involved in DiMeDBC metabolism may contribute substantially to the tissue-specific genotoxicity of this hepatocarcinogen.  相似文献   

4.
DNA adducts measured in tissues are promising markers for identifying damage in organs that could be a target for carcinogens. Polymorphisms in genes involved in polycyclic aromatic hydrocarbons (PAHs) metabolism have been shown to modify the levels of PAH-DNA adducts in target tissues. In order to study the role of metabolic gene polymorphisms on DNA-adduct formation in sperm, we determined the GSTM1 genotype in a group of men in whom PAH-DNA adducts in sperm had been previously measured by immunofluorescence. The mean level of adducts in sperm was significantly higher in subjects carrying the homozygous deletion variant of GSTM1 than in subjects with a functional GSTM1 (mean fluorescence staining intensity: 1.62+/-0.62 versus 1.33+/-0.55; p=0.02). With respect to environmental factors, subjects who reported occupational exposure to PAHs and who carried the GSTM1 deletion had a significant increase in PAH-DNA adducts in sperm in comparison with subjects who were not exposed and had a functional GSTM1 (mean staining intensity: 1.83+/-0.67 versus 1.30+/-0.53; p=0.05), although among GSTM1-null subjects there was no significant difference with or without occupational exposure. This study presents for the first time the effect of a common polymorphism in a gene that metabolizes PAHs on DNA-adduct levels in sperm.  相似文献   

5.
We review studies which investigate the presence, using structure-specific analytical methods, of DNA or protein adducts of the carcinogen benzo[a]pyrene (BaP) in human tissues. The analytical methods include high performance liquid chromatography with fluorescence detection and gas chromatography-mass spectrometry. Although, for DNA detection these methods are somewhat less sensitive than non-specific techniques such as 32P-postlabeling and immunoassay, they have the distinct advantage of providing reliable structural information. In order to achieve adequate sensitivity, these methods often require the use of fairly large amounts of DNA (>100 microg) or protein (50-100mg). Most studies reviewed here measured tetraols released from DNA or protein by hydrolysis of adducts derived from (7R,8S)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), a major ultimate carcinogen of BaP. BPDE-DNA adducts were detected in 39% of 705 samples analyzed. BPDE-protein adducts were found in 59% of 772 samples. There was no single exposure situation that led to an overwhelming presence of detectable adducts. For example, BPDE-DNA adducts were detected in 45% of smokers, 33% of former smokers, 52% of non-smokers, 39% of occupationally exposed individuals, and 34% of environmentally exposed people. Adduct levels were influenced by polymorphisms in carcinogen metabolizing genes such as GSTM1, the presence of which was frequently protective. The relatively high occurrence of non-detectable adducts may result from low levels of BaP exposure and host factors such as genetic polymorphisms. Our analysis demonstrates that the presence of BaP adducts in human tissues cannot be assumed, even in situations where exposure to BaP is relatively high.  相似文献   

6.
Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP.  相似文献   

7.
Bay-region diol epoxides are considered the putative ultimate carcinogens of polynuclear aromatic hydrocarbons. However, the results of studies on tumorigenesis and DNA binding of benzo[a]pyrene (BP) and its bay-region diol epoxide, (+)-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyren e [(+)-anti-BPDE] suggest that, in addition to anti-BPDE, other reactive metabolite(s) of BP may also be involved in BP-induced carcinogenesis. Recent studies have demonstrated that 3-hydroxy-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a ]pyrene (anti-BPTE) is another highly reactive metabolite of BP. In order to identify syn- and anti-BPTE-derived DNA adducts and their base selectivity, we synthesized both compounds by two different methods and reacted in vitro with calf thymus DNA and individual nucleotides. The resultant adducts were analyzed by nuclease P1-enhanced 32P-postlabeling. Anti-BPTE produced three major and several minor adducts with DNA; dAp and dGp were the preferred substrates, while dCp and dTp were the least reactive. In contrast, syn-BPTE produced two major adducts each with DNA and dGp; dAp generated only one adduct. Co-chromatography of anti-BPTE-derived DNA adducts with those of mononucleotide adducts revealed that the major adducts in DNA were guanine derived. Further, co-chromatographic results revealed that the anti-BPTE-DNA adducts were distinctly different from that of anti-BPDE-DNA adducts. These observations indicate that both syn- and anti-BPTE can react with DNA bases and these DNA adducts may also contribute to BP-induced carcinogenesis.  相似文献   

8.
The formation and persistence of DNA adducts in liver, intestinal mucosa, gills and brain of juvenile northern pike (Esox lucius) following oral exposure to benzo[a]pyrene (BaP), benzo[k]fluoranthene (BkF) and 7H-dibenzo[c,g]carbazol (DBC) were analysed by 32P-postlabelling. The dosage was 25 micromol/kg body weight of each substance, administered on 5 occasions with an interval of 12-14 days. Sampling was carried out 9 days after the second treatment, and 9, 16, 33 and 78 days after the fifth treatment. Pikes were also fed with the substances singly for comparison of adduct patterns. A complex pattern of adducts was detected in all examined tissues from fish treated with the mixture. Total adduct levels were highest in intestine (347+/-17.4 nmol adducts/mol nucleotides, mean+/-SE), followed by liver (110+/-9.3), gills (69+/-6) and brain (14+/-4.2). In pike treated with BaP alone, one major adduct was detected in all examined tissues. This BaP-adduct made up approximately 50% of the total amount of adducts in the brain. Corresponding values in liver, intestine and gills were 23, 31 and 34%, respectively. One relatively weak BkF-adduct and at least 10 different DBC-adducts were detected in all analysed tissues. Total adduct level in the intestine declined to 29.4% of the maximum value 78 days after the last exposure, while there was no significant decline in adduct levels in liver, gills or brain. The results suggest that intestine is more susceptible to adduct formation than liver after oral exposure, and that adduct levels in the intestine represent ongoing or relatively recent exposure. DNA adducts in the other investigated tissues were much more persistent and may therefore accumulate during long-term exposure.  相似文献   

9.
10.
Exposure of cells to chemical carcinogens and mutagens may result in the formation of DNA adducts, which can give rise to mutations in the genome and to cellular transformation. Methods to measure DNA-adduct formation may be useful for ‘biomonitoring’, to establish exposure of laboratory animals or humans to DNA-damaging agents. For such purposes, immunochemical methods appear to be suitable, because they allow sensitive detection and quantification of DNA adducts in small amounts of sample in a non-radiolabelled form. We have worked out optimal conditions for the detection of DNA adducts by means of competitive enzyme-linked immunosorbent assay (ELISA). This technique involves interaction of soluble antigen, immobilized antigen and antibody. It appeared that the sensitivity of the competitive assay can be improved by lowering the amount of immobilized antigen, adsorbed to the wall of the plastic reaction vessel. On the basis of these observations, suitable conditions were selected for a sensitive quantitative assay of adducts in DNA isolated from various organs of rats, treated (p.o.) with the liver carcinogen 2-acetylaminofluorene (2-AAF). Under the conditions of these experiments, the available rabbit antiserum recognizes the guanosine-AAF adduct with high specificity. A time- and dose-dependent induction of AAF adducts could be measured in liver DNA from exposed rats, whereas the amount of adducts in DNA from spleen and nucleated blood cells remained below the detection limit (1 adduct/108 nucleotides). The implications of these findings with respect to the relevance of blood cell biomonitoring for target cell exposure are discussed.  相似文献   

11.
The daily i.t. administration of benzo[a]pyrene (BP) to Sprague-Dawley rats, for 3 consecutive days, did not cause any toxicity or clastogenicity in bone marrow cells, as evaluated by monitoring the ratio of polychromatic to normochromatic erythrocytes and the frequency of micronucleated polychromatic erythrocytes. However, BP produced a considerable enhancement of binucleated and micronucleated pulmonary alveolar macrophages, as well as a significant increase in polymorphonucleates recovered by bronchoalveolar lavage. These effects were prevented by administering the thiol N-acetylcysteine (NAC) by gavage 5 h before each BP instillation. In addition, the i.t. treatment with BP resulted in the formation of BP diolepoxide (BPDE)-DNA adducts in lungs and liver, as assessed by synchronous fluorescence spectrophotometry, with fluorescence peaks of similar magnitude in the 2 tissues. Pretreatment with NAC by gavage completely prevented BPDE adducts to liver DNA and significantly decreased those to lung DNA.  相似文献   

12.
32P-postlabeling analysis recently revealed that in addition to 5-methylcytosine, mammalian DNA contains covalently modified nucleotides of unknown structures and functions termed I-compounds whose levels increase with age. I-compound levels, in addition, depend on species, strain, sex, tissue, and diet and are generally lowered by carcinogen exposure. As shown here, levels of several non-polar I-compounds in liver DNA of untreated male C3H mice were elevated 2 to 8.5 times at 1800 h and 2400 h as compared to 0600 h and 1200 h, while polar I-compounds and persistent carcinogen-DNA adducts induced by safrole were unaffected by time of day. In liver DNA of male F-344 rats 4 non-polar I-compounds and 4 polar I-compounds showed significant circadian rhythm at 2000 h compared to 0800 h. This novel circadian variation of DNA structure implies mechanisms precisely regulating I-compound levels in vivo and may conceivably be linked to diurnal differences of DNA synthesis and gene expression.  相似文献   

13.
7,12-Dimethylbenz[a]anthracene (DMBA) is a highly potent experimental carcinogen, that must be transformed to its ultimate carcinogenic form in vivo. The meso-region theory of aromatic hydrocarbon carcinogenesis predicts that 7-hydroxymethyl sulfate (7-HMBA) ester plays a major role in the metabolic activation, benzylic DNA adduct formation and complete carcinogenicity of HMBA and DMBA. This study was undertaken to detect highly lipophilic benzylic DNA adducts resulting from the reaction between 7-hydroxymethy sulfate ester of HMBA (7-SMBA) and DNA as well as determine their DNA base selectivity. Synthetic 7-SMBA was incubated with DNA (800 microg/ml) and individual deoxynucleoside 3'-monophosphates (600 microg/ml) and benzylic adducts were analyzed by 32P-postlabeling/TLC following their enrichment with butanol extraction. Dilute ammonium hydroxide-based solvents were developed to detect the highly lipophilic aralkyl adducts. The reaction with DNA, dGp and dAp gave rise to multiple adducts; dCp and dTp showed no significant adducts. Chromatographic comparison revealed that the major DNA adduct was derived from dG. The methodology developed was also found applicable for highly lipophilic adducts resulting from sulfate esters of structurally-related metabolites of DMBA.  相似文献   

14.
The in vivo formation of benzo[alpha]pyrene (BP) metabolite-DNA adducts in several tissues of mice and rabbits was examined. Included were tissues with widely divergent xenobiotic metabolizing capabilities such as liver and brain. The major adduct identified in each tissue was the (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDEI)-deoxyguanosine adduct. A 7 beta,8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydro-BP (BPDEII)-deoxyguanosine adduct, a (-)-BPDEI-deoxyguanosine adduct and an unidentified adduct were also observed. These adducts were present in all of the tissues of the mice and in the lungs of the rabbits; only BPDEI and BPDEII were seen in the rest of the rabbit tissues. In all of the tissues studied, the DNA adduct levels were unexpectedly similar. For example, the BPDEI-DNA adduct levels in muscle and brain of mice were approx. 50% of those in lung and liver at each oral BP dose examined. After an i.v. dose of BP in rabbits, the BPDEI adduct levels in lung were three times those in brain or liver and twice those in muscle. The binding of BP metabolites to protein was also determined in these tissues. The tissue-to-tissue variation in protein binding levels of BP metabolites was greater than that for BPDEI-DNA adducts. There are several possible explanations for the in vivo binding of BP metabolites to DNA and protein of various tissues. First, oxidative metabolism of BP in each of the examined tissues might account for the observed binding. Second, reactive metabolites could be formed in tissues such as liver and lung and be transported to cells in tissues such as muscle and brain where they bind to DNA and protein. In any case, the tissue-to-tissue variations in protein and DNA binding of BP-derived radioactivity do not correlate with differences in cytochrome P-450 activity.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.  相似文献   

16.
We investigated the effect of punicalagin (PC) on benzo[a]pyrene (BP)-induced DNA adducts in vitro and in vivo. Incubation of BP (1 μM) with rat liver microsomes, appropriate co-factors and DNA in the presence of vehicle or punicalagin (1-40 μM) showed dose-dependent inhibition of the resultant DNA adducts, with essentially complete (97%) inhibition at 40 μM. However, PC failed to inhibit anti-BPDE-induced DNA adducts when tested in an in vitro non-microsomal system, suggesting that the inhibition of the microsomal BP-DNA adducts occurred due to inhibition of P450 1A1 by PC. To determine its efficacy in vivo, female S/D rats were administered punicalagin via the diet (1500 ppm; approximately 19 mg/day/animal) or subcutaneous polymeric implants (two 2-cm, 200mg with 20% drug load; 40 mg PC/implant) and then treated with continuous low-dose of BP by a subcutaneous polymeric implant (2 cm, 200mg with 10% load; 20mg BP/implant) and euthanized after 10 days. Analysis of the lung DNA by (32)P-postlabeling showed significant (60%; p=0.029) inhibition of DNA adducts by PC administered via the implants; the dietary route showed modest (34%) but statistically insignificant inhibition. Furthermore, total PC administered by implants was approximately 38-fold lower compared with the dietary route. Analysis of the lung microsomes showed significant inhibition of cytochrome P450 1A1 activity and induction of glutathione. Release of PC from the implants was found to be biphasic starting with a burst release, followed by a gradual decline. Ultra performance liquid chromatography analysis showed no detectable PC in the plasma but its hydrolyzed product, ellagic acid was readily detected. The plasma concentration of ellagic acid was over two orders of magnitude higher (589 ± 78 ng/mL) in the implant group compared with diet (4.36 ± 0.83 ng/mL). Together, our data show that delivery of PC by implants can reduce its effective dose substantially, and that the inhibition of DNA adducts in vivo occurred presumably due to the conversion of PC to ellagic acid.  相似文献   

17.
Ericson G  Balk L 《Mutation research》2000,454(1-2):11-20
The time-course and dose dependent formation of DNA adducts in juvenile northern pike (Esox lucius) following a single exposure to a mixture of benzo[a]pyrene (BaP), benzo[k]fluoranthene (BkF) and 7H-dibenzo[c,g]carbazole (DBC) were investigated by use of the (32)P-postlabelling assay. A complex adduct pattern was detected in liver and intestine of exposed fish. For the time-course studies fish were exposed either by oral administration or by intraperitoneal (i.p.) injection. Following a single i.p. injection of the mixture (40micromole/kg body weight of each substance) significantly elevated DNA adduct levels were detected in the liver after 1 day. Adduct levels were higher in liver than in intestine, in which significant elevation were detected from day 3 to 12. Following exposure via food (80micromole/kg body weight of each substance), adduct levels were detected in both liver and intestine 1 day after exposure, and continued to increase until day 3 in liver and day 6 in intestine. Calculation of a binding index, which compensates for differences in dosage, resulted in much higher adduct formation (five times in liver and 22 times in intestine) following oral exposure. Pikes receiving single oral doses of 12.5, 50, 100 or 200micromole/kg body weight of each substance exhibited significantly higher adduct levels in both liver and intestine compared to controls. Hepatic adduct levels were also higher in fish given 100 and 200micromole/kg compared to 12.5micromole/kg. Results from this study show that DNA adducts are rapidly formed in juvenile northern pike following both i.p. injection and feeding of a mixture of BaP, BkF and DBC. A maximum level was reached within a few days, which then persisted at approximately the same level for at least 9-12 days. The results also shows that higher levels of adducts were obtained following oral administration compared to i.p. injection, particularly in the intestine.  相似文献   

18.
To investigate whether cytochrome P-450 catalyzes the covalent binding of substrates to DNA by one-electron oxidation, the ability of both uninduced and 3-methylcholanthrene (MC) induced rat liver microsomes and nuclei to catalyze covalent binding of benzo[a]pyrene (BP) to DNA and formation of the labile adduct 7-(benzo[a]pyren-6-yl)guanine (BP-N7Gua) was investigated. This adduct arises from the reaction of the BP radical cation at C-6 with the nucleophilic N-7 of the guanine moiety. In the various systems studied, 1-9 times more BP-N7Gua adduct was isolated than the total amount of stable BP adducts in the DNA. The specific cytochrome P-450 inhibitor 2-[(4,6-dichloro-o-biphenyl)oxy]ethylamine hydrobromide (DPEA) reduced or eliminated BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The effects of the antioxidants cysteine, glutathione, and p-methoxythiophenol were also investigated. Although cysteine had no effect on the microsome-catalyzed processes, glutathione and p-methoxythiophenol inhibited BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The decreased levels of binding of BP to DNA in the presence of glutathione or p-methoxythiophenol are matched by decreased amounts of BP-N7Gua adduct and of stable BP-DNA adducts detected by the 32P-postlabeling technique. This study represents the first demonstration of cytochrome P-450 mediating covalent binding of substrates to DNA via one-electron oxidation and suggests that this enzyme can catalyze peroxidase-type electron-transfer reactions.  相似文献   

19.
We previously demonstrated using a bacterial system that the antigenotoxic activity of the anthraquinone compounds purpurin and alizarin was due to the suppression of microsomal enzyme activity involved in the activation of mutagens. In the present study we determined the effect of purpurin and alizarin on (i) MeIQx–DNA-adduct formation in mouse tissues and (ii) the activity of phases I and II enzymes in liver fractions, the liver being the target tissue of MeIQx. The amount of MeIQx–DNA adduct formed was determined using 32P-postlabeling methods. Methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD) enzyme activities, which reflect CYP 1A activity, were measured as markers for phase I enzymes, and UDP–glucuronyltransferase (UGT) and glutathione S-transferase (GST) activities were determined as markers for phase II enzymes. Mice fed with a diet containing 0.5% purpurin for 3 days prior to MeIQx administration had 70% fewer MeIQx–DNA adducts in the lung and kidney, and fewer DNA adducts (insignificant, statistically) in the liver compared with mice fed a diet lacking purpurin. MROD and EROD activities in the liver of these mice increased six- and eight-fold, respectively, and were higher than those determined for the control mice within 1 day following commencement of purpurin treatment. These elevated activities were maintained during treatment and declined immediately following removal of purpurin from the diet. GST and UGT activities gradually increased 2.5- and 3-fold, respectively, following purpurin treatment, and were maintained at significantly high levels even after purpurin administration ceased. Alizarin did not significantly affect DNA-adduct formation and enzyme activity, except in the case of UGT. Taken together, our results show that purpurin reduced MeIQx–DNA-adduct formation by maintaining elevated phase II enzyme activities, thereby facilitating accelerated excretion of MeIQx.  相似文献   

20.
Mitomycin C (MMC) is a clinically used drug with mutagenic and antitumor activities, presumably elicited through its covalent binding to DNA, however, little is known about MMC binding to DNA in vivo. A 32P-postlabeling method that does not require radiolabeled test compounds was employed here to study the formation of DNA adducts in somatic and reproductive tissues of rats 24 h after an i.p. dose of 9 mg/kg MMC. Among 14 tissues studied in female rats, MMC-DNA adduct levels were within a 2-fold range in 11 tissues, i.e. bladder, colon, esophagus, heart, kidney, liver, lung, ovary, pancreas, small intestine and stomach (minimum levels of 9.6-21.9 adducts per 10(7) N). Three other tissues, i.e. brain, spleen and thymus, exhibited lower adduct levels (0.2 5.4 and 1.4 adducts, respectively, per 10(7) N). Liver DNA adduct levels were 32% lower in male than in female rats. Testicular DNA contained 2.5 adducts per 10(7) N, i.e. 5.3 times less than ovarian DNA. 32P-labeled adduct patterns were qualitatively similar among the different tissues and consisted of 10 adducts, one of which comprised 71 (+/- 5)% of the total. All these adducts were chromatographically identical to adducts formed by the reaction of chemically reduced MMC with DNA in vitro, demonstrating that metabolic activation of MMC occurred via reduction. Using homopolydeoxyribonucleotides modified with MMC, in vivo adducts were shown to be mostly (greater than 90%) guanine derivatives and small amounts of adenine, cytosine and thymine products. Most of the adducts appeared to be monofunctional derivatives of DNA nucleotides. Dose-dependent MMC-DNA adduct formation was determined in rat liver over an 82-fold range of MMC administered (0.11-9.0 mg/kg). The lowest dose level studied was 4.5 times lower than the recommended single dose for human cancer chemotherapy (20 mg/m2). Thus, these results predict that 32P-postlabeling methodology is suitable to monitor and quantify DNA adducts in tissue biopsies of patients receiving MMC chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号