首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance Raman (RR) spectra are reported for the hemoprotein subunit (SiR-HP) of Escherichia coli NADPH-sulfite reductase (EC 1.8.1.2) in various ligation and redox states. Comparison of the RR spectra of extracted siroheme and the mu-oxo FeIII dimer of octaethylisobacteriochlorin with those of mu-oxo FeIII octaethylchlorin dimer and mu-oxo FeIII octaethylporphyrin dimer demonstrates that many siroheme bands can be correlated with established porphyrin skeletal modes. Depolarization measurements are a powerful tool in this correlation, since the 45 degrees rotation of the C2 symmetry axis of the isobacteriochlorin ring relative to the chlorin system results in reversal of the polarization properties (polarized vs anomalously polarized) of bands correlating with B1g and B2g modes of porphyrin. Various SiR-HP adducts (CO, NO, CN-, SO3(2-] show upshifted high-frequency bands, characteristic of the low-spin state and consistent with the expected core size sensitivity of the skeletal modes. Fully reduced unliganded SiR-HP (both siroheme and Fe4S4 cluster reduced) in liquid solution displays RR features comparable to those of high-spin ferrous porphyrins; on freezing, the RR spectrum changes, reflecting an apparent mixture of siroheme spin states. At intermediate reduction levels in solution a RR species is observed whose high-frequency bands are upshifted relative to oxidized and fully reduced SiR-HP. This spectrum, thought to arise from the "one-electron" state of SiR-HP (siroheme reduced, cluster oxidized), may be due to S = 1 FeII siroheme.  相似文献   

2.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The two semi-met (FeIII, FeII) forms of hemerythrin prepared by either oxidation of the deoxy form or reduction of the met form, exhibit rather different EPR spectra. It is shown that a very weak difference in the rhombic distortion of the ferrous site is sufficient to account for this large shift of the g values. It is proposed that the important departure from g = 2.00 and the large anisotropy of the g tensor reflect directly the octahedral coordination of the ferrous ion. Such a coordination could then be present in other proteins which contain binuclear clusters characterized by similar EPR spectra.  相似文献   

4.
The interaction of Cu(II) ion with small peptides has been an interesting subject to clarify the role of copper in detail. As various Cu(II)-oligopeptide complexes can also be good models for the active centers of metalloenzymes, complexes of tripeptide and tetrapeptides are frequently investigated instead of the complexes of large peptides. The histidine side-chains of various metalloproteins frequently take part in the copper(II) coordination. Accordingly, we studied the coordination of Cu(II) to the N and C terminal protected tripeptide ligands L(A) (Ac-HisGlyHis-NHMe), L(B) (Ac-HisAlaHis-NHMe) and L(C) (Ac-HisAibHis-NHMe) in aqueous solution potentiometrially in order to determine the effect of C(alpha) methyl groups at middle residue acid on the ligation of the backbone NH and also on histidine's N(im) of coordination. Species distribution curves indicates that in acidic pH, all three peptides behave as bidentate ligands and a macrochelate forms on the metal coordination with the two histidine imidazolyl N. This coordination remains unaffected with the +I effect of increasing CH(3) groups at C(alpha) of middle residue. In the pH range 4-8, the tridentate coordination from the peptide is seen in ligand L(A) and L(B) while it is absent in L(C) due to +I effect of two C(alpha) methyl groups at middle residue as they makes N-terminal NH deprotonation difficult in this pH range and it takes place along with C terminal NH and only 4N coordinated species formed at higher pH. These 4N (N(im), N(-), N(-), N(im)) coordinated species are formed by all the three ligands at higher pH values.  相似文献   

5.
Phyllotreta cruciferae is an important insect pest of spring-planted Brassica crops, especially during the seedling stage. To determine the effect of early season P. cruciferae infestation on seed yield, 10 genotypes from each of two canola species (Brassica napus L. and Brassica rapa L.) and two mustard species (Brassica juncea L. and Sinapis alba L.) were grown in 2 yr under three different P. cruciferae treatments: (1) no insecticide control; (2) foliar applications of endosulfan; and (3) carbofuran with seed at planting plus foliar application of carbaryl. Averaged over 10 genotypes, B. rapa showed most visible P. cruciferae injury and showed greatest yield reduction without insecticide application. Mustard species (S. alba and B. juncea) showed least visible injury and higher yield without insecticide compared with canola species (B. napus and B. rapa). Indeed, average seed yield of S. alba without insecticide was higher than either B. napus or B. rapa with most effective P. cruciferae control. Significant variation occurred within each species. A number of lines from B. napus, B. juncea, anid S. alba showed less feeding injury and yield reduction as a result of P. cruciferae infestation compared with other lines from the same species examined, thus having potential genetic background for developing resistant cultivars.  相似文献   

6.
13C, 17O and 57Fe NMR spectra of several carbonmonoxy hemoprotein models with varying polar and steric effects of the distal organic superstructure, constraints of the proximal side, and porphyrin ruffling are reported. Both heme models and heme proteins obey a similar excellent linear delta(13C) versus nu(C-O) relationship which is primarily due to modulation of pi-back-bonding from the Fe d(pi) to CO pi* orbital by the distal pocket polar interactions. The lack of correlation between delta(13C) and delta(17O) suggests that the two probes do not reflect a similar type of electronic and structural perturbation. delta(17O) is not primarily influenced by the local distal field interactions and does not correlate with any single structural property of the Fe-C-O unit; however, atropisomerism and deformation of the porphyrin geometry appear to play a significant role. 57Fe shieldings vary by nearly 900 ppm among various hemes and an excellent correlation was found between delta(57Fe) and the absolute crystallographic average displacement of the meso carbon atoms, /Cm/, relative to the porphyrin core mean plane. The excellent correlation between iron-57 shieldings and the average shieldings of the meso carbons of the porphyrin skeleton of TPP derivatives suggests that the two probes reflect a similar type of electronic and structural perturbation which is primarily porphyrin ruffling.  相似文献   

7.
K Alston  C B Storm 《Biochemistry》1979,18(20):4292-4300
Copper(II) protoporphyrin IX has been introduced into apomyoglobin, and its utility as a reporter group of the heme environment has been examined. The Soret and visible absorption bands and electron spin resonance spectrum show that the Cu(II) is five coordinate, probably through coordination to the F-8 proximal histidine. The resonance Raman spectrum does not indicate any appreciable distortion from the solution conformation of copper(II) protoporphyrin IX dimethyl ester in CS2. The ultraviolet circular dichroism shows no alteration of the helical content of the globin from that of metmyoglobin. The circular dichroism of the porphyrin transitions suggests that the packing of the amino acid side chains around the porphyrin is different than that in the native metmyoglobin.  相似文献   

8.
Resonance Raman spectra, obtained with 7 ns pulsed laser excitation, are reported for the photoproducts of the FeII-CO and FeIII-NO adducts of horseradish peroxidase. The porphyrin skeletal frequencies are the same as those observed for unligated FeII and FeIII (native) horseradish peroxidase, respectively. The absence of unrelaxed spectra is discussed in relation to the photoproduct frequency shifts and relaxations observed previously for hemoglobin. It is proposed that protein conformational changes which are likely to be associated with the hydrogen-bonding interactions in the horseradish peroxidase heme pocket may not produce detectable changes in the porphyrin skeletal mode frequencies.  相似文献   

9.
N-Substituted porphyrins are well-known for the distortion they exhibit of the porphyrin plane through the sp(3) hybridization of one of the pyrrolenic units. They have served as model compounds in investigations of many biochemical processes. In this paper, we developed an efficient route to N-substituted porphyrins, and report the synthesis of a series of new N-substituted cobaltacarborane-porphyrins containing one or two cobaltabisdicarbollide anions linked by (CH(2)CH(2)O)(2) chains to either the core porphyrin nitrogens or to a meso-aminophenyl group. These conjugates show different degrees of distortion of the porphyrin macrocycle, which affect their spectroscopic and electrochemical properties. In particular, the core N-substituted conjugates show significant fluorescence quenching in comparison with the noncore substituted macrocycles. The X-ray structures of two targeted core N-cobaltacarborane porphyrin conjugates are presented. The electrochemical and spectroelectrochemical properties of these porphyrin conjugates were investigated; while the peripheral N-substituted cobaltacarboranylporphyrins undergo three reversible reductions and three reversible oxidations (two attributed to the porphyrin and one to the Co(III) cluster), the core N-substituted porphyrins exhibit complicated electrochemical behavior with coupled chemical reactions.  相似文献   

10.
This work describes the use of 3-hydroxy-4-pyridinone ligands for binding the [M(CO)(3)](+) core (M = Re, Tc) in the context of preparing novel Tc(I) and Re(I) glucose conjugates. Five pyridinone ligands bearing pendent carbohydrate moieties, HL(1-5), were coordinated to the [M(CO)(3)](+) core on the macroscopic scale (M = Re) and on the tracer scale (M = (99m)Tc, (186)Re). On the macroscopic scale the complexes, ReL(1-5)(CO)(3)(H(2)O), were thoroughly characterized by mass spectrometry, IR spectroscopy, UV-visible spectroscopy, elemental analysis, and 1D/2D NMR spectroscopy. Characterization confirmed the bidentate coordination of the pyridinone and the pendent nature of the carbohydrate and suggests the presence of a water molecule in the sixth coordination site. In preliminary biological evaluation, both the ligands and complexes were assessed as potential substrates or inhibitors of hexokinase, but showed no activity. Labeling via the [(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor gave the tracer species (99m)TcL(1-5)(CO)(3)(H(2)O) in high radiochemical yields. Similar high radiochemical yields when labeling with (186)Re were facilitated by in situ preparation of the [(186)Re(CO)(3)(H(2)O)(3)](+) species in the presence of HL(1-5) to give (186)ReL(1-5)(CO)(3)(H(2)O). Stability challenges, incubating (99m)TcL(1-5)(CO)(3)(H(2)O) in the presence of excess cysteine and histidine, confirmed complex stability up to 24 h.  相似文献   

11.
To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9? shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for β-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the β-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

12.
The Cu(II) in Cu(H(-2)L) has been postulated to be successively transported to cysteine (Cys) as follows; Cu(H(-2)L) <==> Cu(H(-2)L)(Cys*-) <==> Cu(H(-1)L)(Cys*-) --> Cu(H(-1)L)(Cys-), where Cys*- denotes the monodentate Cys-. N-acetyl-cysteinate (ACys-) complexes Cu(H(-2)L)(ACys-) and Cu(H(-1)L)(ACys-), having similar coordination modes to Cu(H(-2)L)(Cys*-) and Cu(H(-1)L)(Cys*-), respectively, exhibited the S --> Cu(II) charge transfer absorption at 325-355 nm and the d-d absorption at 530-610 nm. A linear interrelation existed between the energies of the CD and d-d absorptions. Cu(H(-2)L)(ACys-) were in rapid equilibrium with Cu(H(-1)L)(ACys-). Upon forming the ternary complex, pK(c2) of the parent Cu(H(-1)L) was raised to more than 1.0. The formation constants (K) of the Cu(H(-1)L)(ACys-) species from Cu(H(-1)L) were bigger than those of Cu(H(-2)L)(ACys-) from Cu(H(-2)L). The linear free-energy relationship existed between the free-energy change (deltaG) and the entropy change (deltaS) for the ternary complex formation. The rate constants (k1+) for the Cu(H(-1)L)(Cys-) formation closely correlated with the K values for Cu(H(-2)L)(ACys-). The ternary complexes containing ACys are considered to be analogous complexes to the intermediates in the transport of Cu(II) from peptides to cysteine.  相似文献   

13.
Synthetic procedures are described that allow access to new copper(II) complexes with dipeptides containing the alpha-aminoisobutyric residue (Aib) as ligands. The solid complexes [Cu(H(-1)L(A))](n).nH(2)O (1) (L(A)H=H-Aib-Gly-OH), [Cu(H(-1)L(B))(MeOH)](n).nMeOH (2) (L(B)H=H-Aib-L-Leu-OH) and [Cu(H(-1)L(C))](n) (3) (L(C)H=H-Aib-L-Phe-OH) have been isolated and characterized by single-crystal X-ray crystallography, solid-state IR spectra and UV-Vis spectroscopy in solution (H(-1)L(2-) is the dianionic form of the corresponding dipeptide). Complexes 1 and 3 are three-dimensional coordination polymers with similar structures. The doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate), O'(carboxylate), O(peptide) mu(3) ligand and binds to one Cu(II) atom at its amino and peptide nitrogens and at one carboxylate oxygen, to a second metal at the other carboxylate oxygen, while a third Cu(II) atom is attached to the peptide oxygen. The geometry around copper(II) is distorted square pyramidal with the peptide oxygen at the apex of the pyramid. The structure of 2 consists of zigzag polymeric chains, where the doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate), O'(carboxylate) mu(2) ligand. The geometry at copper(II) is square pyramidal with the methanol oxygen at the apex. The IR data are discussed in terms of the nature of bonding and known structures. The UV-Vis spectra show that the solid-state structures of 1, 2 and 3 do not persist in H(2)O.  相似文献   

14.
Site-specific mutants of human myoglobin (Mb) have been prepared, in which Leu29 (B10) is replaced by Ala(L29A) or Ile(L29I), in order to examine the influence of this highly conserved residue in the hydrophobic clusters of the heme distal site on the heme environmental structure and ligand binding properties of Mb. Structural characterizations of these recombinant Mbs are studied by electronic absorption, infrared (IR), one- and two-dimensional proton nuclear magnetic resonance spectroscopies, and ligand-binding kinetics by laser photolysis measurements under ambient and high pressures (up to 2000 bar). Multiple split carbon monoxide (CO) stretch bands in the IR spectra of mutant Mbs exhibit a relative decrease of the 1945 cm-1 band (approximately 50%) which is associated with an upright binding geometry of CO, accompanied by an increase of the tilted CO conformer at 1932 cm-1. On the basis of these results, replacement of Leu29(B10) by Ala or Ile appears to allow bound CO to rotate from a conformation pointing toward the beta meso carbon of the heme group to the one pointing toward the alpha meso carbon atom, presumably filling the space left by removal of the delta 2 carbon atom of Leu29(B10). These substitutions cause the rate constants for CO and O2 association to decrease almost 3-5-fold. Present results show that CO and O2 bindings to the heme iron of Mb are controlled by Leu29(B10) by influencing the structure of close vicinity of the heme and the geometry of iron-bound ligand. Further, mutant Mbs (Leu72(E15)----Ala and Leu104 (G5)----Ala) which have altered residues in another hydrophobic clusters around proximal and distal site are also examined.  相似文献   

15.
A quantum-chemical calculation was carried out for the electronic structures of coordination compounds of general formula: FeP(L1)(L2) (P--porphin; L1 = SHCH3, [SCH3]-, [SC6F4H]-; L2 = CO, NO, O2), modeling the active site of cytochrome P450. It was shown that Coulomb repulsion between the electrons of the sulfur lone pair leads to the transfer of the electronic density from the ligands L1 = [SCH3]- or [SC6F4H]- to the porphyrin of/and to the L2 ligand. This explains the origin of the band at 450 nm in the absorption spectra of the complexes of cytochrome P450 with CO, the absence of such a band in those with O2, and the strong activation of dioxygen by cytochrome P450.  相似文献   

16.
His-Val-His and His-Val-Gly-Asp are two naturally occurring peptide sequences, present at the active site of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). The interactions of His-Val-His=A (copper binding site) with Cu(II) and of His-Val-Gly-Asp=B (zinc binding site) with Zn(II) have been studied by using both potentiometric and spectroscopic methods (visible, EPR, NMR). The stoichiometry, stability constants and solution structure of the complexes formed have been determined. The binding modes of the species [CuAH](2+) and [CuA](+) were characterized by histamine type of coordination. [CuA](+) is further stabilized by the formation of a macrochelate with the involvement of the imidazole of the C-terminal histidine. The existence of macrochelate results in a slight distortion of the coordination geometry providing good base for the development of enzyme models. The enhanced stability of the macrochelate suppresses the formation of bis-complexes as well as the amide deprotonation. This process, however, takes place at higher pH resulting in the formation of the 4 N(-) coordinated [NH(2),N(-),N(-),N(im)] species [CuAH(2-)](-). On the other hand, in the case of the Zn(II)-His-Val-Gly-Asp system, coordination takes place at the terminal carboxylate in species [ZnBH(2)](2+). Monodentate binding occurs via the N-terminal imidazole in [ZnBH](+) while histamine type of coordination is possible in [ZnB], [ZnB(2)H](-) and [ZnB(2)](2-) species. Amide deprotonation does not take place in the case of Zn(2+), hydroxo-complexes are formed instead.  相似文献   

17.
Stereo-structures of protonated (L)-phenylalanine ((L)-Phe), (L)-tyrosine ((L)-Tyr) and (L)-tryptophan ((L)-Trp) containing homodipeptides ((L)-Tyr-(L)-Tyr, (L)-Phe-(L)-Phe, (L)-Trp-(L)-Trp) are carried out by ab initio calculations. The obtained data in gas phase are compared with experimental ones, received by linear-dichroic infrared (IR-LD) spectroscopy of solids, oriented as suspension in nematic mesophase. An observation of a good correlation between theoretical and spectroscopic geometry parameters established and illustrated the possibilities of this complex study approach for the prediction of the stereo-structures in compounds in solid state. The protonation leads to little variance in the bond lengths and angles, expecting the COO(-) fragment, where a distortion of equalized COO(-) bond lengths, stabilizing a C=O double bond and C-O(H) one is established. Significant deviations of the dihedral angles as a result of the protonation are obtained in the skeletal aliphatic and amide- fragments. In (L)-Tyr-(L)-Tyr and (L)-Phe-(L)-Phe, a deviation of O=C-N-H torsion angle about 10-14(0) is predicted. The calculations show a trans-amide configuration in (L)-Trp-(L)-Trp and a cis-one after its protonation.  相似文献   

18.
The copper(II), nickel(II) and zinc(II) binding ability of the multi-histidine peptide N-acetyl-His-Pro-His-His-NH2 has been studied by combined pH-potentiometry and visible, CD and EPR spectroscopies. The internal proline residue, preventing the metal ion induced successive amide deprotonations, resulted in the shift of this process toward higher pH values as compared to other peptides. The metal ions in the parent [ML]2+ complexes are exclusively bound by the three imidazole side chains. In [CuH−1L]+, formed between pH 6-8, the side chains of the two adjacent histidines and the peptide nitrogen between them are involved in metal ion binding. The next deprotonation results in the proton loss of the coordinated water molecule (CuH−1L(OH)). The latter two species exert polyfunctional catalytic activity, since they possess superoxide dismutase-, catecholase- (the oxidation of 3,5-di-tert-butylcatechol) and phosphatase-like (transesterification of the activated phosphoester 2-hydroxypropyl-4-nitrophenyl phosphate) properties. On further increase of the pH rearrangement of the coordination sphere takes place leading to the [CuH−3L] species, the deprotonated amide nitrogen displaces a coordinated imidazole nitrogen from the equatorial position of the metal ion. The shapes of the visible and CD spectra reflect a distorted arrangement of the donor atoms around the metal ion. In presence of zinc(II) the species [ZnL]2+ forms only above pH 6, which is shortly followed by precipitation. On the other hand, the [NiL]2+ complex is stable over a wide pH range, its deprotonation takes place only above pH 8. At pH 10 an octahedral NiH−2L species is present at first, which transforms slowly to a yellow square planar complex.  相似文献   

19.
Antitumor, neutral, chemically stable, water soluble and functionalized aminomalonato-platinum(II) complexes have been prepared and their mode of coordination characterized by elemental analysis and infrared spectra. Among this new class of compounds, aminomalonato(1,2-diaminocyclohexane)platinum(II) has been selected for 13C NMR measurements and for initial evaluation against L1210 and B 16 melanoma. The preliminary biological results reveal the high anti- neoplastic potential of this compound.  相似文献   

20.
The mutual interaction of various amine bases with the (dibenzo[b,i][1,4,8,11] tetraazacyclotetradecinato)cobalt(II) (Co(II)-1) was investigated by measuring electronic spectra in methyl benzoate. The Co(II)-1 became the pentacoordinated complex by taking up an amine base in the axile site: Co(II)-1 + B ? BCo(II)-1. For the mutual interaction of substituted pyridines with the Co(II)-1, the general behavior of the equilibrium constants was explained on the basis of the amine basicity and the Hammett equation by reference to the corresponding behavior of the porphyrin, corrin and corrole complexes. Moreover, there exists a systematic correlation between log K and the chemical shift of the corresponding 4-position in the 13C-NMR spectra of substituted pyridines. The isoequilibrium temperature obtained from a plot of ΔH against ΔS was 260 K. The equilibrium is primarily controlled by entropy at the usual temperature. The weaker coordination tendency of some hindered pyridine such as 2-methyl- and 2,6-dimethylpyridine toward Co(II)-1 was attributed to the steric effect between the in-plane ligand of Co(II)-1 and the 2- and/or 6-methyl groups of substituted pyridines in the coordination process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号