首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II.The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2–3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3 untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes.  相似文献   

2.
3.
RNA polymerase II (RNAP II) has previously been shown to be required for the pre-mRNA polyadenylation cleavage reaction in vitro. This activity was found to reside solely in the C-terminal domain (CTD) of the enzyme's largest subunit. Using a deletion analysis of glutathione S-transferase-CTD fusion proteins, we searched among the CTD's 52 imperfectly repetitive heptapeptides for the minimal subset that possesses this property. We found that heptads in the vicinity of 30 to 37 contribute modestly more than other sections, but that no specific subsection of the CTD is necessary or sufficient for cleavage. To investigate further the heptad requirements for cleavage, we constructed a series of all-consensus CTDs having 13, 26, 39, and 52 YSPTSPS repeats. We found that the nonconsensus CTD heptads are together responsible for only 20% of the wild-type cleavage activity. Analysis of the all-consensus CTD series revealed that the remaining 80% of the CTD-dependent cleavage activity directly correlates with CTD length, with significant activity requiring approximately 26 or more repeats. These results are consistent with a scaffolding role for the RNAP II CTD in the pre-mRNA cleavage reaction.  相似文献   

4.

Background  

Plasmodium falciparum is responsible for the most acute form of human malaria. Most recent studies demonstrate that it belongs to a monophyletic lineage specialized in the infection of great ape hosts. Several other Plasmodium species cause human malaria. They all belong to another distinct lineage of parasites which infect a wider range of primate species. All known mammalian malaria parasites appear to be monophyletic. Their clade includes the two previous distinct lineages of parasites of primates and great apes, one lineage of rodent parasites, and presumably Hepatocystis species. Plasmodium falciparum and great ape parasites are commonly thought to be the sister-group of all other mammal-infecting malaria parasites. However, some studies supported contradictory origins and found parasites of great apes to be closer to those of rodents, or to those of other primates.  相似文献   

5.
Summary We have isolated and sequenced a portion of the gene encoding the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II from three mammals. These mammalian sequences include one rodent and two primate CTDs. Comparisons of the new sequences to mouse and Chinese hamster show a high degree of conservation among the mammalian CTDs. Due to synonymous codon usage, the nucleotide differences between hamster, rat, ape, and human result in no amino acid changes. The amino acid sequence for the mouse CTD appears to have one different amino acid when compared to the other four sequences. Therefore, except for the one variation in mouse, all of the known mammalian CTDs have identical amino acid sequences. This is in marked contrast to the situation among more divergent species. The present study suggests that there is a strong evolutionary pressure to maintain the primary structure of the mammalian CTD. Offprint requests to: J.L. Corden  相似文献   

6.
7.
8.
9.
10.
The DNA-dependent RNA polymerases of Schneider 2-L cells of Drosophila melanogaster are described. These cells contain five readily detectable forms of this enzyme, polymerases Ia, Ib, IIIa, II, and IIIb, which elute from DEAE-Sephadex at 0.08, 0.12, 0.15, 0.20, and 0.22 m ammonium sulfate, respectively. RNA polymerases IIIa and IIIb, which each constitute about 5–10% of the total RNA polymerase activity in Drosophila embryos, are found to constitute 30 and 10%, respectively, of the total polymerase activity in cultured cells. The two form III polymerases are further characterized by in vitro response to divalent cations and ionic strength, template utilization, and sensitivity to -amanitin. Verification of the class III designation of these two polymerases is provided by their sensitivity to only very high levels of -amanitin (50% inhibition at approximately 800 µg/ml), their 10-fold greater activity on poly[d(A–T)], and their elution from DEAE-cellulose at lower ionic strengths than from DEAE-Sephadex.This work was supported by the Natural Sciences and Engineering Research Council.  相似文献   

11.
Summary Rabbit antibodies against Artemia RNA polymerase II have been raised and utilized to study the immunological relationships between the subunits from RNA polymerases I, II and III from this organism and RNA polymerase II from other eukaryotes. We describe here for the first time the subunit structure of Artemia RNA polymerases I and III. These enzymes have 9 and 13 subunits respectively. The anti-RNA polymerase II antibodies recognize two subunits of 19.4 and 18 kDa common to the three enzymes, and another subunit of 25.6 kDa common to RNA polymerases II and III. The antibodies against Artemia RNA polymerase II also react with the subunits of high molecular weight and with subunits of around 25 and 33 kDa of RNA polymerase II from other eukaryotes (Drosophila melanogaster, Chironomus thummi, triticum (wheat) and Rattus (rat)). This interspecies relatedness is a common feature of eukaryotic RNA polymerases.Abbreviations RNAp RNA polymerase - DPT diazophenylthioether - SDS sodium dodecylsulfate  相似文献   

12.
In preparation for the isolation and biochemical characterization of putative RNA polymerase mutants, DNA-dependent RNA polymerases of Drosophila melanogaster adults were isolated and partially characterized. Approximately 70% of the female adult RNA polymerase is located in ovaries. Multiple forms of ovarian RNA polymerases I and II are separable by DEAE-Sephadex chromatography. The two forms of RNA polymerase II differ in ammonium sulfate optima. RNA polymerase IIA is more active with double-stranded DNA as template, whereas RNA polymerase IIB transcribes single-stranded DNA most efficiently. Rechromatography of RNA polymerase IIA on DEAE-Sephadex results in the loss of ability of this form to transcribed double-stranded DNA most efficiently. Ovariectomized carcasses have two forms of RNA polymerase I and one form of RNA polymerase II and each transcribes single-stranded DNA most efficiently. As judged by gel filtration chromatography, female adult extracts have forms of RNA polymerase II that differ in molecular weight and template preference.Supported by Grants GM23456 from the NIH and 11259 from the City University Research Foundation.  相似文献   

13.
SYNOPSIS. DNA-dependent RNA polymerases have been solubilized from homogenates of Crithidia fasciculata using gentle extraction procedures. RNA polymerase I and II are separated on DEAE cellulose at 0.07M (NH4)2SO4 and 0.13M (NH4)2SO4 respectively. RNA polymerase II is inhibited 80% by α-amanitin (25 μg/ml). Both RNA polymerases require DNA as a template, ribonucleoside triphosphates and Mn2+. The synthesis of RNA as a product is inhibited by DNase. RNase, pronase and actinomycin D. Purified kinetoplast and nuclear DNA can serve as templates for the RNA polymerases. Denatured DNA templates are preferred. The synthesis of RNA continues for at least an hour and is inhibited by trypanocidal drugs including suramin. antrycide, acriflavine, ethidium bromide and berenil. Complementary RNA synthesized in vitro from C. fasciculata kinetoplast DNA hybridizes with C. fasciculata kinetoplast DNA but not with C. fasciculata nuclear DNA or Blastocrithidia culicis kinetoplast DNA, Escherichia coli, T4 or calf thymus DNAs. The complementary RNA synthesized in vitro from C.fasciculata kinetoplast DNA sediments at 4–5S.  相似文献   

14.
N-[2-Naphthyl]-glycine hydrazide has been shown for the first time as a potent inhibitor of the DNA-dependent RNA polymerase (EC 2.7.7.6) ofMycobacterium tuberculosis H37Rv. At a concentration of 10-9 M, the compound shows maximum inhibition of the enzyme, the inhibition being less at higher concentrations. It is suggested that the novel type of inhibition pattern may be due to hydrophobic interactions occurring between the molecules of the compound at higher concentrations. The finding that there is a shift in the λmax of the compound could also account for this phenomenon. The effect of this compound was also tested on DNA-dependent RNA polymerases from an eukaryotic fungus,Microsporum canis. At a concentration of 10−9 M it inhibits RNA polymerase II (32%) but not RNA polymerasesI andIII  相似文献   

15.
16.
17.
Heinz Hahn 《Planta》1982,154(1):53-59
The DNA-dependent RNA polymerases I, II, and III (ribonucleosidetriphosphate: RNA nucleotidyl-transferase, EC 2.7.7.6) from Achlya ambisexualis E87 (male), have been isolated. The highly purified RNA polymerase I was found to be composed of polypeptides with the following molecular weights (·10-4): 18.5, 14, 11.8, 7.3, 6.1, 4.9, 4.4, 2.8. RNA polymerase II showed a 400-fold higher resistance against -amanitin than mammalian or higher plant RNA polymerase II.  相似文献   

18.
The carboxyl-terminal repeat domain (CTD) of RNA polymerase II is thought to help coordinate events during RNA metabolism. The mammalian CTD consists of 52 imperfectly repeated heptads followed by 10 additional residues at the C terminus. The CTD is required for cleavage and polyadenylation in vitro. We studied poly(A)-dependent termination in vivo using CTD truncation mutants. Poly(A)-dependent termination occurs in two steps, pause and release. We found that the CTD is required for release, the first 25 heptads being sufficient. Neither the final 10 amino acids nor the variant heptads of the second half of the CTD were required. No part of the CTD was required for poly(A)-dependent pausing--the poly(A) signal could communicate directly with the body of the polymerase. By removing the CTD, pausing could be observed without being obscured by release. Poly(A)-dependent pausing appeared to operate by slowing down the polymerase, such as by down-regulation of a positive elongation factor. Although the first 25 heptads supported undiminished poly(A)-dependent termination, they did not efficiently support events near the promoter involved in abortive elongation. However, the second half of the CTD, including the final 10 amino acids, was sufficient for these functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号