首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Young (mean mass 735 g) green turtles (Chelonia mydas) were able to swim in a water channel at sustained speeds between 0-14 and 0-35 m.s-1. Oxygen consumption at rest was was 0-07 l.kg-1.h-1; at maximum swimming speed oxygen consumption was 3-4 times greater than at rest for a given individual. In comparison with other animals of the same body mass the cost of transport for the green turtle (0.186lO2.kg-1.km-1) is less than that for flying birds but greater than that for fish. From drag measurements it was calculated that the aerobic efficiency of swimming was between 1 and 10%; the higher efficiencies were found at the higher swimming speeds. Based upon the drag calculations for young turtles, it is estimated that adult turtles making the round-trip breeding migration between Brazil and Ascension Island (4800 km) would require the equivalent of about 21% of their body mass in fat stores to account for the energetic cost of swimming.  相似文献   

2.
The present study was conducted to determine the contribution of the turning effect of buoyant force for generating bodyroll and its relationship with the subjects' variability in swimming speed at distance pace and sub-maximal sprinting pace. The performances of front crawl swimming performed by 11 skilled swimmers were recorded with two panning periscopes for three-dimensional analysis. The bodyroll (BR) exhibited by each of the 11 male competitive swimmers was determined for every given instant as the time-integral of the conceptual angular velocity of the entire body about the long-axis, which was computed from the angular momentum and the moment of inertia of entire body. The part of BR generated by the buoyancy torque (BR(BT)) was determined from the moment of inertia of the entire body and the double time-integral of the buoyancy torque. The mean value for the peak-to-peak amplitude of the buoyancy torque was 15 Nm at distance pace and 19 Nm at sub-maximum sprinting speed. The contribution of buoyancy to BR was significantly greater ( P < 0.01) than that of the hydrodynamic forces. The individual swimming speed at sub-maximal sprinting pace was positively correlated ( P < 0.04) with the contribution of buoyancy to BR. These results showed that the skilled swimmers used buoyant force as the primary source of generating BR, and that faster swimmers used buoyant force more effectively to generate BR than slower swimmers. Based on the results and subsequent theoretical analysis, possible patterns of arm-BR coordination that may increase the effectiveness of using buoyant force for BR are discussed.  相似文献   

3.
Fish functional design and swimming performance   总被引:11,自引:1,他引:10  
Classifications of fish swimming are reviewed as a prelude to discussing functional design and performance in an ecological context. Webb (1984a , 1998 ) classified fishes based on body shape and locomotor mode into three basic categories: body and caudal fin (BCF) periodic, BCF transient (fast‐starts, turns) and median and paired fin (MPF) swimmers. Swimming performance and functional design is discussed for each of these categories. Webb hypothesized that specialization in any given category would limit performance in any other. For example, routine MPF swimmers should be penalized in BCF transient (fast‐start propulsion). Recent studies offer much support for Webb's construct but also suggest some necessary amendments. In particular, design and performance compromises for different swimming modes are associated with fish that employ the same propulsor for more than one task (coupled, e.g. the same propulsor for routine steady swimming and fast‐starts). For example, pike (BCF transient specialist) achieve better acceleration performance than trout (generalist). Pike steady (BCF periodic) performance, however, is inferior to that of trout. Fish that employ different propulsors for different tasks (decoupled, e.g. MPF propulsion for low‐speed routine swimming and BCF motions for fast‐starts) do not show serious performance compromises. For example, certain MPF low‐speed swimmers show comparable fast‐start performance to BCF forms. Arguably, the evolution of decoupled locomotor systems was a major factor underlying the adaptive radiation of teleosts. Low‐speed routine propulsion releases MPF swimmers from the morphological constraints imposed by streamlining allowing for a high degree of variability in form. This contrasts with BCF periodic swimming specialists where representatives of four vertebrate classes show evolutionary convergence on a single, optimal ‘thunniform’ design. However, recent experimental studies on the comparative performance of carangiform and thunniform swimmers contradict some of the predictions of hydromechanical models. This is addressed in regard to the swimming performance, energetics and muscle physiology of tuna. The concept of gait is reviewed in the context of coupled and decoupled locomotor systems. Biomimetic approaches to the development of Autonomous Underwater Vehicles have given a new context and impetus to research and this is discussed in relation to current views of fish functional design and swimming performance. Suggestions are made for possible future research directions.  相似文献   

4.
The oxygen consumption rates of two cyprinid fishes, carp (Cyprinus carpio L.) and roach (Rutilus rutilus (L.)), were analysed for a wide range of body mass and swimming speed by computerized intermittent-flow respirometry. Bioenergetic models were derived, based on fish mass (M) and swimming speed (U), to predict the minimal speed and mass-specific active metabolic rate (AMR) in these fishes (AMR=aMbUc). Mass and speed together explained more than 90% of the variance in total swimming costs in both cases. The derived models show that carp consume far more oxygen at a specific speed and body mass, thus being less efficient in energy use during swimming than roach. It was further found that in carp (AMR=0.02M0.8U0.95) the metabolic increment during swimming is more strongly effected by speed, whereas in roach (AMR=0.02M0.93U0.6) it is more strongly effected by body mass. The different swimming traits of carp and roach are suitable for their respective lifestyles and ecological demands.  相似文献   

5.
Some penaeids are active swimmers, undertaking migrations of hundreds of nautical miles. At present, however, very little is known of swimming ability in penaeid shrimps. The aim of the present study is to investigate swimming endurance of whiteleg shrimp, Litopenaeus vannamei, against one of five flow velocities (5.41, 6.78, 8.21, 10.11, and 11.47 cm s(-1)) for up to 9000 s at 20 degrees C in a swimming channel. Body mass, hemolymph total protein concentration, and hemolymph glucose level were measured before swimming and immediately following swimming to evaluate physiological effect of swimming in L. vannamei. No shrimp swam the full 9000 s at any of the velocities tested. The swimming endurance decreased as swimming speed was increased. The relationship between swimming endurance (t, in s) and swimming speed (v, in cm s(-1)) can be described by the Curve Estimation: v.t0.38 = 159.64 (R2 = 0.94). The swimming ability index (SAI), defined as SAI = integral 0-9000 vdt x 10(-4) (cm) was found to be 7.28 cm for the shrimp tested. Swimming to fatigue leads to severe loss of body mass, hemolymph total protein concentration, and hemolymph glucose level in L. vannamei (P < 0.05). Furthermore, these decreases and swimming speed showed significantly polynomial relationships (P < 0.05). The results suggest that the power model fits well to the observed endurance estimates and the SAI is a good index to quantitatively describe the overall swimming ability of L. vannamei. Furthermore, hemolymph total protein concentration may be used as a rapid and reliable indicator to assess the penaeid shrimps' swimming speed and hence swimming ability.  相似文献   

6.
Few studies have examined the aerobic demand of backstroke swimming, and its relation to body morphology, technique, or performance. The aims of this study were thus to: i) describe the aerobic demand of backstroke swimming in proficient swimmers at high velocities; ii) assess the effects of body size and stroke technique on submaximal and maximal O2 costs, and; iii) test for a relationship between submaximal O2 costs and maximal performance. Sixteen male competitive swimmers were tested during backstroke swimming at velocities from 1.0 to 1.4 m.s-1. Results showed that VO2 increased linearly with velocity (m.s-1) following the equation VO2 = 6.28v - 3.81 (r = 0.77, SEE/Y = 14.9%). VO2 was also related to the subjects' body mass, height, and armspan. Longer distances per stroke were associated with lower O2 costs, and better maximal performances. A significant relation was found between VO2 at 1.1 m.s-1, adjusted for body mass, and 400 m performance (r = -0.78). Submaximal VO2 was also related to reported times for 100 m and 200 m races. Multiple correlation analyses indicated that VO2 at 1.1 m.s-1 and VO2max accounted for up to 78% of the variance in maximal performances. These results suggest that the assessment of submaximal and maximal VO2 during backstroke swimming may be of value in the training and testing programs of competitive swimmers.  相似文献   

7.
In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer, similar to the experimental results. Finally, we show results from a simple physical model of a flapping fin, using fins of different flexural stiffness. When actuated in the same way, fins of different stiffnesses propel themselves at different speeds with different kinematics. Future experimental and computational work will need to consider the mechanisms underlying production of the anguilliform and carangiform swimming modes, because anguilliform swimmers tend to be less stiff, in general, than are carangiform swimmers.  相似文献   

8.
Respiratory, metabolic, and cardiovascular responses to swimming were examined in two species of pinniped, the harbor seal (Phoca vitulina) and the California sea lion (Zalophus californianus). 1. Harbor seals remained submerged for 82-92% of the time at swimming speeds below 1.2 m.s-1. At higher speeds, including simulated speeds above 1.4 m.s-1, the percentage of time spent submerged decreased, and was inversely related to body weight. In contrast, the percentage of time spent submerged did not change with speed for sea lions swimming from 0.5 m.s-1 to 4.0 m.s-1. 2. During swimming, harbor seals showed a distinct breathhold bradycardia and ventilatory tachycardia that were independent of swimming speed. Average heart rate was 137 beats.min-1 when swimming on the water surface and 50 beats.min-1 when submerged. A bimodal pattern of heart rate also occurred in sea lions, but was not as pronounced as in the seals. 3. The weighted average heart rate (WAHR), calculated from measured heart rate and the percentage time spent on the water surface or submerged, increased linearly with swimming speed for both species. The graded increase in heart rate with exercise load is similar to the response observed for terrestrial mammals. 4. The rate of oxygen consumption increased exponentially with swimming speed in both seals and sea lions. The minimum cost of transport calculated from these rates ranged from 2.3 to 3.6 J.m-1.kg-1, and was 2.5-4.0 times the level predicted for similarly-sized salmonids. Despite different modes of propulsion and physiological responses to swimming, these pinnipeds demonstrate similar transport costs.  相似文献   

9.
The acute cardiorespiratory responses of spontaneously hypertensive rats (SHR) to swimming and running exercise was investigated because SHR populations are hyperresponsive to external stimuli, of the paucity of existing data, and of the uncertainty on the role of exercise stimuli for training adaptations to occur. Male rats were assigned to one of five groups (n = 5-6/group) and designated as controls (C), inexperienced or naive free swimmers (NFS), experienced free swimmers (FS), experienced weighted swimmers (WS) (attached weights equal to 2% of their body weight) or experienced runners (R) who ran at an intensity of 75% of their VO2max. After 75 min in the water, all groups were acidotic and hypercapnic with the WS experiencing the greatest changes. Heart rate (HR) was increased in all swimmers during the initial 10 min, but declined thereafter, and after 75 min, the HR of WS (348 +/- 1 beats/min) was significantly lower than the C group (416 +/- 22 beats/min). At the same time interval, mean arterial blood pressure (MAP) was decreased in all swimming groups to values lower than the C animals. In addition, an exaggerated diving reflex was frequently noted when the rats were submerged. When the magnitudes of the changes were evaluated in the swimming animals they were directly associated with their submergence times, i.e., during 65-75 min of the swim, NFS, FS, and WS were submerged for 43, 46, and 66% of their total swim time, respectively. In sharp contrast to the swimmers, the runners exhibited increases in HR and MAP with their blood gas measurements being indicative of hyperventilation. We concluded that swimming as an exercise mode for hypertensive rats is best served to study the combined effects of excitement, prolonged submergence, and the consequences of the diving reflex.  相似文献   

10.
Summary Steadily swimming fish show a species-specific stride length and tail tip amplitude. These are constant over the entire speed range if expressed as a fraction of the body length. The speed of a fish equals the stride length times the tail beat frequency. We describe how maximum tail beat frequencies, and hence maximum swimming speeds, are related to temperature and body length.Maximum sustained swimming speeds, endurance during swimming at higher speeds, and maximum burst velocities of 27 species are compared. The rate of decline of endurance with increasing speed is either gradual or steep, with only a few cases in between Steady swimmers show the steepest decline.The published effects of temperature on endurance are not consistent.The effect of body size on the endurance curve could be investigated for two species. The maximum sustained speed decreases with increasing length, and the slope of the endurance curves steepens with increasing length with the same factor in both species. The maximum burst speed is 10 Ls-1 on average.  相似文献   

11.
Energy cost of front-crawl swimming in women   总被引:1,自引:0,他引:1  
The purpose of this study was to examine the relationship between the energy cost of swimming per unit distance (Cs) at different velocities (v) and performance level, body size and swimming technique in women. A total of 58 females swimmers were studied. Three performance levels (A, B, C) were determined, ranging from the slower (A) to the faster (B, C). At level C and at 1.1 m.s-1, Cs,1.1 was reduced by 7% when directly compared to level B. The Cs,1.1 was reduced by 10% when calculated per unit of height (h) and by 37% when calculated per unit of h and hydrostatic lift (HL). For the whole group of swimmers, the equation regression was Cs,1.1 = 0.27 h-2.38 HL - 7.5 (r = 0.53, P less than 0.01). To evaluate the specific influence of arm length two groups of long- and short-armed swimmers were selected among swimmers of similar h and performance. The Cs was significantly higher (P less than 0.05) by 12%, SD 2.2%, for short-armed than for long-armed swimmers. To evaluate the influence of different types of swimming technique, two other groups of similar performance and anthropometric characteristics were selected. The Cs was significantly higher (P less than 0.05) by 12%, SD 4.5% for swimmers using for preference their legs rather than their arms. The Cs of the sprinters was 15.7%, SD 2% higher than that of the long-distance swimmers. For all groups, Cs increased with v on average by 8% to 11% every 0.1 m.s-1. These findings showed that Cs variations of these women were close to those previously demonstrated for men. The Cs depends on performance level, body size, buoyancy, swimming technique and v.  相似文献   

12.
Swimming by sea otters: adaptations for low energetic cost locomotion   总被引:4,自引:0,他引:4  
The energetics and hydrodynamics of surface and submerged swimming were compared in the sea otter (Enhydra lutris). 1. Sea otters used two distinct speed ranges that varied with swimming mode. Sustained surface swimming was limited to speeds less than 0.80 m/s, while sustained submerged swimming occurred over the range of 0.60 to 1.39 m/s. 2. Rates of oxygen consumption (VO2) at the transition speed (0.80 m/s) were 41% lower for submerged swimming by sea otters in comparison to surface swimming. 3. Total cost of transport for surface swimming sea otters, 12.56 joules/kg.m, was more than 12 times the predicted value for a similarly-sized salmonid fish. Transport costs for submerged swimming at the same speed was only 7.33 times the predicted value. 4. The allometric relationship for minimum cost of transport in surface swimming birds and mammals was y = 23.87 chi -0.15 where y = cost of transport in joules/kg.m and x = body mass in kg. This regression loosely parallels the relationship for salmonid fish. 5. Correlations between aquatic behavior, morphological specialization, and swimming energetics indicate that the development of swimming in mustelids involved transitions from fore-paw to hind-paw propulsion, and from surface to submerged swimming.  相似文献   

13.
This study gives an integrated analysis of the effects of temperature, swimming speed and body mass on standard metabolism and aerobic swimming performance in vendace (Coregonus albula (L.)). The metabolic rate was investigated at 4, 8 and 15°C using one flow-through respirometer and two intermittent-flow swim tunnels. We found that the standard metabolic rate (SMR), which increased significantly with temperature, accounted for up to 2/3 of the total swimming costs at optimum speed (U opt), although mean U opt was high, ranging from 2.0 to 2.8 body lengths per second. Net swimming costs increased with swimming speed, but showed no clear trend with temperature. The influence of body mass on the metabolic rate varied with temperature and activity level resulting in scaling exponents (b) of 0.71–0.94. A multivariate regression analysis was performed to integrate the effects of temperature, speed and mass (AMR = 0.82M 0.93 exp(0.07T) + 0.43M 0.93 U 2.03). The regression analysis showed that temperature affects standard but not net active metabolic costs in this species. Further, we conclude that a low speed exponent, high optimum speeds and high ratios of standard to activity costs suggest a remarkably efficient swimming performance in vendace.  相似文献   

14.
Mathematical models and recordings of cloacal temperature suggest that leatherback turtles (Dermochelys coriacea) maintain core body temperature higher than ambient water temperature (T(W)) while freely swimming at sea. We investigated the thermoregulatory capabilities of free-ranging leatherbacks and, specifically, the effect that changes in diving patterns and ambient temperatures have on leatherback body temperatures (T(B)). Data loggers were used to record subcarapace and gastrointestinal tract temperatures (T(SC) and T(GT), respectively), T(W), swim speed, dive depth, and dive times of female leatherback turtles during internesting intervals off the coast of Guanacaste, Costa Rica. Mean T(SC) (28.7 degrees -29.0 degrees C) was significantly higher than mean T(W) (25.0 degrees -27.5 degrees C). There was a significant positive relationship between T(SC) and T(W) and a significant negative correlation between T(SC) and dive depth and T(GT) and dive depth. Rapid fluctuations in T(GT) occurred during the first several days of the internesting interval, which suggests that turtles were ingesting prey or water during this time. Turtles spent 79%-91% of the time at sea swimming at speeds greater than 0.2 m s(-1), and the average swim speed was 0.7 +/- 0.2 m s(-1). Results from this study show that alterations in diving behavior and T(W) affect T(B) of leatherback turtles in the tropics. Body temperatures of free-ranging leatherback turtles correspond well with values for T(B) predicted by mathematical models for tropical conditions.  相似文献   

15.
Murray short-necked turtles were trained to walk on a motorised treadmill and to swim in a recirculating flume. Through filmed records, the frequency of limb movement and the time that thrust was directed against the substrate were measured. The animals wore masks when walking and accessed air when swimming from a ventilated capsule placed on top of the water surface. Measurement of the exhalant O(2) and CO(2) levels from these devices enabled the measurement of metabolic rates. Equivalent data were obtained from swimming and hopping cane toads, although repeatable measures of limb frequency and contact times were not obtained due to the intermittent form of locomotion in this species. Comparing the cost of transport, the energy required to transport a mass of animal over a unit distance, with other animals showed that toads do not have a cheap form of terrestrial locomotion, but turtles do; turtles use half the cost predicted from their body mass. This economy of locomotion is consistent with what is known about turtle muscle, the mechanics of their gait, and the extremely long contact time for a limb with the substrate. Swimming in toads is energetically expensive, whereas turtles, on the basis of mass, use about the same energy to transport a unit mass as an equivalent-size fish. The data were compared with the predictions of the Kram-Taylor hypothesis for locomotory scaling, and walking turtles were found to provide a numerical fit. The data show that both terrestrial and aquatic locomotory energetics in toads are generally higher than predictions on the basis of mass, whereas in turtles they are lower.  相似文献   

16.
Previous results show that juvenile shortnose sturgeon are steady swimmers and, compared with salmonids, generally have low critical swimming (UCrit) and endurance swimming capacities. Most studies on swimming capacities of sturgeon, and other fishes, include those where fish have only been swum once and the metrics of swimming performance are assessed (e.g., time swum, speed achieved). Under natural conditions, there are ample instances where fish undergo multiple swimming cycles when traversing fish ways, culverts and other sources of fast water flow. While some evidence exists for salmonids, the effects of repeat swimming are not well known for sturgeon. The current study consisted of two experiments. The first examined the UCrit of juvenile shortnose sturgeon following three consecutive swimming trials with a 30 min recovery period between subsequent tests. The second examined the endurance swimming capacities of juvenile shortnose sturgeon following three consecutive swimming trials with a 60 min recovery period between subsequent tests. Our findings indicate that (i) UCrit was consistent (~2 body lengths/s) among swimming trials; (ii) significant individual variation exists between individuals in the endurance swimming trials; and (iii) consistent results exist for individuals across swimming trials in both the UCrit and the endurance swimming tests. These results suggest that juvenile shortnose sturgeon have a high recovery capacity, and their behaviour and morphology likely reflect aspects of their swimming capacities.  相似文献   

17.
The measurement of drag while swimming (i.e. active drag) is a controversial issue. Therefore, in a group of six elite swimmers two active drag measurement methods were compared to assess whether both measure the same retarding force during swimming. In method 1 push-off forces are measured directly using the system to measure active drag (MAD-system). In method 2 (the velocity perturbation method, VPM) drag is estimated from the difference in swimming speed when subjects swim twice at maximal effort (assuming equal power output and assuming a quadratic drag-speed relationship): once swimming free, and once swimming with a hydrodynamic body attached that created a known additional resistance. The average drag for the VPM tests (53.2 N) was statistically significant and different from the active drag for the MAD-test (66.9 N), paired Student's t-test: 2.484, 12 DF, p=0.029. A post hoc analysis was performed to assess whether the two methods measure a different phenomenon. Based on the drag speed curve obtained with the MAD-system, the VPM-data were re-examined. For diverging drag determinations the assumption of equal power output of the 'free' trial (swimming free) vs. the towing trial (swimming with hydrodynamic buoy) appeared to be violated. The regression of the relative difference in force (MAD vs. VPM) on the relative difference in power (swimming free vs. swimming with hydrodynamic body) was: %Deltadrag=1.898 x %Deltapower -4.498, r2=0.88. This suggests that the major part of the difference in active drag values is due to a non-equal power output in the 'free' relative towing trial during the VPM-test. The simulation of the violation of the equal power output assumption and the calculation of the effect of an other than quadratic drag-speed relationship corroborated the tentative conclusion that both methods measure essentially the same phenomenon and that active drag differences can be explained by a violation of test assumptions.  相似文献   

18.
Movements of six basking sharks (4.0-6.5 m total body length, L(T)) swimming at the surface were tracked and horizontal velocities determined. Sharks were tracked for between 1.8 and 55 min with between 4 and 21 mean speed determinations per shark track. The mean filter-feeding swimming speed was 0.85 m s(-1) (+/-0.05 S.E., n=49 determinations) compared to the non-feeding (cruising) mean speed of 1.08 m s(-1) (+/-0.03 S.E., n=21 determinations). Both absolute (m s(-1)) and specific (L s(-1)) swimming speeds during filter-feeding were significantly lower than when cruise swimming with the mouth closed, indicating basking sharks select speeds approximately 24% lower when engaged in filter-feeding. This reduction in speed during filter-feeding could be a behavioural response to avoid increased drag-induced energy costs associated with feeding at higher speeds. Non-feeding basking sharks (4 m L(T)) cruised at speeds close to, but slightly faster ( approximately 18%) than the optimum speed predicted by the Weihs (1977) [Weihs, D., 1977. Effects of size on the sustained swimming speeds of aquatic organisms. In: Pedley, T.J. (Ed.), Scale Effects in Animal Locomotion. Academic Press, London, pp. 333-338.] optimal cruising speed model. In contrast, filter-feeding basking sharks swam between 29 and 39% slower than the speed predicted by the Weihs and Webb (1983) [Weihs, D., Webb, P.W., 1983. Optimization of locomotion. In: Webb, P.W., Weihs, D. (Eds.), Fish Biomechanics. Praeger, New York, pp. 339-371.] optimal filter-feeding model. This significant under-estimation in observed feeding speed compared to model predictions was most likely accounted for by surface drag effects reducing optimum speeds of tracked sharks, together with inaccurate parameter estimates used in the general model to predict optimal speeds of basking sharks from body size extrapolations.  相似文献   

19.
The purpose of the present study was to examine the effect of water temperature on the human body during low-intensity prolonged swimming. Six male college swimmers participated in this study. The experiments consisted of breast stroke swimming for 120 minutes in 23 degrees C, 28 degrees C and 33 degrees C water at a constant speed of 0.4 m.sec-1 in a swimming flume. The same subjects walked on a treadmill at a rate of approximately 50% of maximal oxygen uptake (VO2max) at the same relative intensity as the three swimming trials. Rectal temperature (Tre) in 33 degrees C water was unchanged during swimming for 120 minutes. Tre during treadmill walking increased significantly compared to the three different swimming trials. Tre, mean skin temperature (Tsk) and mean body temperature (Tb) in 23 degrees C and 28 degrees C water decreased significantly more than in both the 33 degrees C water and walking on land. VO2 during swimming in 23 degrees C water increased more than during swimming in the 28 degrees C and 33 degrees C trials; however, there were no significant differences in VO2 between the 23 degrees C swimming trial and treadmill walking. Heart rate (HR) during treadmill walking on land increased significantly compared with HR during the three swimming trials. Plasma adrenaline concentration at the end of the treadmill walking was higher than that at the end of each of the three swimming trials. Noradrenaline concentrations at the end of swimming in the 23 degrees C water and treadmill walking were higher than those during the other two swimming trials. Blood lactate concentration during swimming in 23 degrees C water was higher than that during the other two swimming trials and walking on land. These results suggest that the balance of heat loss and heat production is maintained in the warm water temperature. Therefore, a relatively warm water temperature may be desirable when prolonged swimming or other water exercise is performed at low intensity.  相似文献   

20.
五种淡水鱼类幼鱼游泳能力的比较   总被引:1,自引:0,他引:1  
付翔  付成  付世建 《生态学杂志》2020,(5):1629-1635
为了探讨栖息于不同生境中鱼类的游泳能力和偏好游泳速度及其生理机制,本研究以中华倒刺鲃(Spinibarbus sinensis)、异育银鲫(Carassius auratus gibelio)、岩原鲤(Procypris rabaudi)、青鱼(Mylopharyngodon piceus)和胭脂鱼(Myxocryprinus asiaticus) 5种鱼的幼鱼为对象,在(25±1)℃条件下测定了5种鱼类的标准代谢率(SMR)、最大代谢率(MMR)、有氧代谢范围(MS)、临界游泳速度(Ucrit)、最大匀加速游泳速度(Ucat)和偏好游泳速度(Upref)。结果发现:5种实验鱼中,中华倒刺鲃的游泳能力最强,游泳能力较差的为青鱼和胭脂鱼; 5种鱼之间的代谢和游泳能力差异显著,其偏好游泳速度主要集中在(10~24.5cm·s-1)区域。研究表明,鱼类游泳能力的种间差异可能主要由心鳃系统相关的呼吸能力和体型相关的游泳效率所决定。本研究提供的有关鱼类游泳能力、偏好游泳速度等资料对于鱼道设计等有一定的参考价值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号