首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
1. The effect of climate variability on phytoplankton and zooplankton dynamics and nutrient availability was studied in two high mountain fishless lakes (La Caldera and Río Seco) of contrasting morphology, hydrology and dissolved inorganic nitrogen : soluble reactive phosphate (DIN : SRP) ratios during 1986 and after a 10‐year‐long drought in 1996 and 1997. 2. Thaw was delayed and water temperatures were lower in both lakes in 1996 than in 1986 and 1997. However, the lake‐specific DIN : SRP ratio was maintained in the 3 years studied, reflecting its local control. 3. On other hand, the presumptive limiting nutrient in each lake, P in La Caldera and N in Río Seco, showed higher concentrations in 1996 versus 1986 and 1997. Significant positive correlations between temperature and chlorophyll a were found in both lakes in 1996 but these relationships were negative or not significant in 1986 and 1997. Zooplankton biomass showed lower values in 1996 than in 1986 or 1997. 4. These findings can be explained by a decoupling of the phytoplankton–zooplankton interaction because of a constraint on zooplankton growth by low temperatures in the coldest year studied. This observation furnishes evidence that regional climatic control on the phytoplankton–zooplankton link can modulate the overall demand for nutrients.  相似文献   

2.
Major efforts have been made world-wide to improve the ecological quality of shallow lakes by reducing external nutrient loading. These have often resulted in lower in-lake total phosphorus (TP) and decreased chlorophyll a levels in surface water, reduced phytoplankton biomass and higher Secchi depth. Internal loading delays recovery, but in north temperate lakes a new equilibrium with respect to TP often is reached after <10–15 years. In comparison, the response time to reduced nitrogen (N) loading is typically <5 years. Also increased top-down control may be important. Fish biomass often declines, and the percentage of piscivores, the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass and the cladoceran size all tend to increase. This holds for both small and relatively large lakes, for example, the largest lake in Denmark (40 km2), shallow Lake Arresø, has responded relatively rapidly to a ca. 76% loading reduction arising from nutrient reduction and top-down control. Some lakes, however, have proven resistant to loading reductions. To accelerate recovery several physico-chemical and biological restoration methods have been developed for north temperate lakes and used with varying degrees of success. Biological measures, such as selective removal of planktivorous fish, stocking of piscivorous fish and implantation or protection of submerged plants, often are cheap versus traditional physico-chemical methods and are therefore attractive. However, their long-term effectiveness is uncertain. It is argued that additional measures beyond loading reduction are less cost-efficient and often not needed in very large lakes. Although fewer data are available on tropical lakes these seem to respond to external loading reductions, an example being Lake Paranoá, Brazil (38 km2). However, differences in biological interactions between cold temperate versus warm temperate-subtropical-tropical lakes make transfer of existing biological restoration methods to warm lakes difficult. Warm lakes often have prolonged growth seasons with a higher risk of long-lasting algal blooms and dense floating plant communities, smaller fish, higher aggregation of fish in vegetation (leading to loss of zooplankton refuge), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. The trophic structures of warm lakes vary markedly, depending on precipitation, continental or coastal regions locations, lake age and temperature. Unfortunately, little is known about trophic dynamics and the role of fish in warm lakes. Since many warm lakes suffer from eutrophication, new insights are needed into trophic interactions and potential lake restoration methods, especially since eutrophication is expected to increase in the future owing to economic development and global warming.  相似文献   

3.
Restoration of anthropogenically eutrophied lake ecosystems is difficult due to feedback mechanisms that stabilize the trophically degraded state. Here, we show rapid recovery of a eutrophic stratified lake in response to multiple restoration that targeted the feedback mechanisms of high external and internal nutrient loads, lack of a trophic cascade, and lack of structured littoral habitats. Lake Tiefwarensee (Germany) was exposed to aluminium and calcium treatment and fisheries management over 5 years. Within this period, in-lake phosphorus concentrations declined by more than 80%, and transparency, zooplankton biomass and fish assemblage structure and biomass responded immediately and almost linearly to the reduction in phosphorus concentrations. Phytoplankton biomass and chlorophyll a (chl a) concentrations likewise decreased in response to restoration, but the declining trend was interrupted by one recovery year with unusually high phytoplankton biomasses. The zooplankton:phytoplankton biomass ratio and the chl a:phosphorus ratio approached values observed in other stratified lakes during natural recovery from eutrophication. The slow response of Tiefwarensee to the reduction of external load, and the quick response to the chemical treatment suggest that the disruption of internal P recycling and loading was the decisive restoration measure in Tiefwarensee. The external load reduction was a necessary but not sufficient measure, at least in the short-term, whereas the low-effort fisheries management was of minor importance. A comparison with other case studies confirms that measures aiming to inactivate phosphorus are the most efficient approaches to restore stratified lakes in the short-term, but a shift to a permanent near-pristine state is possible only by additional P input control. Author Contributions: T.M. designed the study, analyzed data, and wrote the paper. M.D. analyzed data. T.G. analyzed data. P.K. designed the study and analyzed data. R.K. conceived of and designed the study. L.K, M.R. and M.S. analyzed data. G.W. contributed new methods, analyzed data and wrote parts of the paper. All authors contributed to writing the final version.  相似文献   

4.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献   

5.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献   

6.
This study compares and contrasts the dynamics of phytoplankton, zooplankton, and nutrients in two of the largest shallow lakes in the USA (Lake Apopka, Florida) and Europe (Lago Trasimeno, Umbria, Italy) and considers particularly the biomass ratio of zooplankton to phytoplankton (BZ:BP) in relation to nutrient levels and in the context of data from other subtropical and temperate lakes. Lake Apopka is hypereutrophic with higher concentrations of total phosphorus (TP), nitrogen (TN), and nearly an order of magnitude higher BP than Lago Trasimeno. However, combined data from the two lakes can be fit to a single log–log regression model that explains 72% of the variability in BP based on TP. In contrast, BZ has a significant positive log–log relationship with TP only for Lago Trasimeno, and is much lower than expected based on the TP concentrations observed in Lake Apopka. Lake Apopka has a fish assemblage that includes high densities of gizzard shad (Dorosoma cepedianum) and threadfin shad (D. petenense), similar to other eutrophic Florida lakes that also have extreme low BZ. The ratio BZ:BP is below 0.01 in Lake Apopka, 10-fold lower than in Trasimeno and among the lowest values reported in the literature. Although stress of high water temperature and a greater proportion of inedible cyanobacteria may be contributing factors, the collective results support an emerging view that fish predation limits the biomass of crustacean zooplankton in subtropical lakes. Handling editor: S. I. Dodson  相似文献   

7.
SUMMARY. 1. New Zealand lakes are shown to have lower average zooplankton biomasses than north-temperate lakes of similar average phytoplankton biomass, expressed as cell volume or chlorophyll a , or similar average total phosphorus concentration, typically by a factor of 5 or more.
2. Evidence suggests that the relatively low zooplankton biomasses of New Zealand lakes may be related to a tendency for them to be dominated by large algae that are not directly available as food for zooplankton, with oligotrophy lakes in particular differing from north-temperate lakes in this respect.
3. This difference in turn may be related largely to their mixing regimes. All of the New Zealand lakes are polymietic or monomietic, whereas the northern lakes used for comparison are mostly dimietic. Also, hetero-cystous cyanobacteria are favoured by the low inorganic nitrogen concentrations that are typical of New Zealand lakes.
4. Poor nutritional quality of the phytoplankton, relating to nitrogen limitation in many New Zealand lakes, might supplement the effects of cell size.
5. Low exploitation of phytoplankton by zooplankton can be expected to produce a shift in the metabolism of New Zealand lakes towards the sediments. Among the potential consequences of this effect are increased hypolimnetic oxygen demand with increased susceptibility to development of large internal loads of nutrients, and consequently, increased sensitivity to accelerated eutrophication from any increase in external nutrient loads.  相似文献   

8.
While the structuring role of fish in lakes is well studied for the summer season in North temperate lakes, little is known about their role in winter when fish activity and light irradiance potentially are lower. This is unfortunate as the progressing climate change may have strong effects on lake winter temperature and possibly on trophic dynamics too. We conducted an enclosure experiment with and without the presence of fish throughout winter in two shallow lakes with contrasting phosphorus concentrations. In hypertrophic Lake Søbygård, absence of fish led to higher biomass of zooplankton, higher grazing potential (zooplankton:phytoplankton ratio) and, accordingly, lower biomass of phytoplankton and chlorophyll a (Chl a), while the concentrations of total nitrogen (TN), total phosphorus (TP), oxygen and pH decreased. The average size of egg-bearing Daphnia and Bosmina and the minimum size of egg-bearing specimens of the two genera rose. In the less eutrophic Lake Stigsholm, zooplankton and their grazing potential were also markedly affected by fish. However, the decrease in Chl a was slight, and phytoplankton biovolume, pH and the oxygen concentration were not affected. TN was higher when fish were absent. Our results indicate that: (i) there is a notable effect of fish on zooplankton community structure and size during winter in both eutrophic and hypertrophic North temperate lakes, (ii) Chl a can be high in winter in such lakes, despite low light irradiance, if fish are abundant, and (iii) the cascading effects on phytoplankton and nutrients in winter may be more pronounced in hypertrophic lakes. Climate warming supposedly leading to reduced winter mortality and dominance of small fish may enhance the risk of turbid state conditions in nutrient-enriched shallow lakes, not only during the summer season, but also during winter.  相似文献   

9.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

10.
1. Grazer and nutrient controls of phytoplankton biomass were tested on two reservoirs of different productivity to assess the potential for zooplankton grazing to affect chlorophyll/phosphorus regression models under Australian conditions. Experiments with zooplankton and nutrients manipulated in enclosures, laboratory feeding trials, and the analysis of in-lake plankton time series were performed. 2. Enclosures with water from the more productive Lake Hume (chlorophyll a = 3–17.5 μg l–1), revealed significant zooplankton effects on chlorophyll a in 3/6, phosphorus limitation in 4/6 and nitrogen limitation in 1/6 of experiments conducted throughout the year. Enclosures with water from the less productive Lake Dartmouth (chlorophyll a = 0.8–3.5 μg l–1), revealed significant zooplankton effects in 5/6, phosphorus limitation in 5/6 and nitrogen limitation in 2/6 of experiments. 3. While Lake Hume enclosure manipulations of the biomass of cladocerans (Daphnia and Diaphanosoma) and large copepods (Boeckella) had negative effects, small copepods (Mesocyclops and Calamoecia) could have positive effects on chlorophyll a. 4. In Lake Hume, total phytoplankton biovolume was negatively correlated with cladoceran biomass, positively with copepod biomass and was uncorrelated with total crustacean biomass. In Lake Dartmouth, total phytoplankton biovolume was negatively correlated with cladoceran biomass, copepod biomass and total crustacean biomass. 5. In both reservoirs, temporal variation in the biomass of Daphnia carinata alone could explain more than 50% of the observed variance in total phytoplankton biovolume. 6. During a period of low phytoplankton biovolume in Lake Hume in spring–summer 1993–94, a conservative estimate of cladoceran community grazing reached a maximum of 0.80 day–1, suggesting that Cladocera made an important contribution to the development of the observed clear-water phase. 7. Enclosure experiments predicted significant grazing when the Cladocera/Phytoplankton biomass ratio was greater than 0.1; this threshold was consistently exceeded during clear water phase in Lake Hume. 8. Crustacean length had a significant effect on individual grazing rates in bottle experiments, with large Daphnia having highest rates. In both reservoirs, mean crustacean length was negatively correlated with phytoplankton biovolume. The observed upper limit of its variation was nearly twice as high compared to other world lakes.  相似文献   

11.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

12.
Summary 1. Species compositions of zooplankton and phytoplankton were followed in Tuesday Lake before and after experimental manipulation of its fish populations (addition of piscivorous largemouth bass, removal of planktivorous minnows). Plankton dynamics were compared to those of adjacent, unmanipulated Paul Lake, where piscivorous fish have been dominant historically. 2. Indices of similarity for the zooplankton communities in the two lakes in 1984 prior to the manipulation were low; however, following the manipulation in spring, 1985, similarity of the zooplankton in the two lakes rose considerably and remained high throughout 1986. This was the result of an increase in Tuesday Lake of previously rare large-bodied cladocerans (Daphnia pulex, Holopedium gibberum) which were the dominants in Paul Lake, and the disappearance in Tuesday Lake of the dominant small-bodied copepod Tropocyclops prasinus, a minor component of the Paul Lake zooplankton. These observations are consistent with prior observations of the effects of size-selective predation on zooplankton communities. 3. Phytoplankton communities also responded strongly to the manipulation, with similarity indices for the two lakes rising from low levels in 1984 to high levels of similarity in 1985 and 1986, reflecting the decrease of formerly dominant Tuesday Lake taxa which were unimportant in Paul Lake and the appearance or increase in Tuesday Lake of several taxa characteristic of the Paul Lake phytoplankton assemblage. these results clearly show that food web structure can have pronounced effects on community composition at all levels of the food web, and that, just as zooplankton communities are structured by sizeselective predation, phytoplankton communities are structured by herbivory. These observations may provide some insight into factors governing the complex distributions of phytoplankton species among various lakes.A contribution from the University of Notre Dame Environmental Research Center, funded by NSF grants BSR-83-08918 and BSR-86-06271  相似文献   

13.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

14.
15.
16.
Irina Trifonova 《Hydrobiologia》1993,249(1-3):93-100
Seasonal succession of phytoplankton biomass, its diversity and its photosynthetic activity in two highly eutrophic lakes have been compared. In order to test the intermediate disturbance hypothesis, the lakes have been chosen with almost the same level of trophy but different conditions of stratification, through two ice-free periods of open water with different weather conditions.High phytoplankton diversity throughout the period of investigation was characteristic for the shallower Lake Lobardzu. The number of species here was usually more than 30 and the Shannon diversity changed from 1.2 to 4.2. Owing to the frequent external disturbances, periods characterized by autogenic succession with establishing dominance and declining diversity alternated with periods of biomass reduction and rises of diversity and photosynthetic activity. In the warmer summer of 1983, with more intense warming of bottom layers and predominance of blue-greens, phytoplankton biomass was higher and diversity lower than in the cold summer of 1982.In stratified Lake Rudusku, phytoplankton diversity and number of species were usually much lower. During the long summer stratification up to three-four dominant species of blue-greens and dinoflagellates become established and competitive exclusion leading to low diversity advanced. Some changes in biomass and diversity, were caused by zooplankton activity.  相似文献   

17.
This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l?1d?1) and to zooplankton (76–264 μgC l?1 d?1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.  相似文献   

18.
1. Filamentous green algae (FGA) may represent an alternative state in high‐nutrient shallow temperate lakes. Furthermore, a clear water state is sometimes associated with the dominance of FGA; however, the mechanisms involved remain uncertain. 2. We hypothesised that FGA may promote a clear water state by directly suppressing phytoplankton growth, mostly via the release of allelochemicals, and that this interaction may be affected by temperature. 3. We examined the relationships between FGA, phytoplanktonic chlorophyll a concentrations and zooplankton in a series of mesocosms (2.8 m3) mimicking enriched shallow ponds now and in a future warmer climate (0 and c. 5 °C above ambient temperatures). We then tested the potential allelopathic effects of FGA (Cladophora sp. and Spirogyra sp.) on phytoplankton using several short‐term microcosms and laboratory experiments. 4. Mesocosms with FGA evidenced lower phytoplanktonic chlorophyll a concentrations than those without. Zooplankton and zooplankton : phytoplankton biomass ratios did not differ between mesocosms with and without FGA, suggesting that grazing was not responsible for the negative effects on phytoplanktonic biomass (chlorophyll a). 5. Our field microcosm experiments demonstrated that FGA strongly suppressed the growth of natural phytoplankton at non‐limiting nutrient conditions and regardless of phytoplankton initial concentrations or micronutrients addition. Furthermore, we found that the negative effect of FGA on phytoplankton growth increased up to 49% under high incubation temperatures. The experiment performed using FGA filtrates confirmed that the inhibitory effect of FGA on phytoplankton may be attributed to allelochemicals. 6. Our results suggest that FGA control of phytoplankton growth may be an important mechanism for stabilising clear water in shallow temperate lakes dominated by FGA and that FGA may play a larger role when lakes get warmer.  相似文献   

19.
1. The restoration of deep lakes has traditionally focused on reducing the external phosphorus loading. 2. Following the diversion of sewage effluent, that led to marked reductions in nutrient concentrations in its main inflow, Rostherne Mere has shown no reduction in phosphorus or chlorophyll a concentrations. A shallow lake upstream (Little Mere), however, has shown a marked response to effluent diversion. 3. Nutrient budgets for Rostherne Mere reveal that sewage effluent was by far the most significant external source of total phosphorus and that diffuse drainage from the catchment was the most significant external source of dissolved inorganic nitrogen. Phosphorus loads from groundwater and a bird roost were insignificant. Internal sources of phosphorus were, however, considerable and were largely responsible for the observed delay in recovery. 4. Phosphorus limitation of phytoplankton biomass may never be attainable because of substantial internal and diffuse sources of phosphorus, combined with a long retention time. Nitrogen is likely to be more important in limiting phytoplankton biomass. Control of diffuse nitrogen sources may therefore be more effective in the restoration of the deeper lakes of this region.  相似文献   

20.
Using empirical data from 466 temperate to arctic lakes covering a total phosphorus (TP) gradient of 2-1036 mg L-1, we describe how the relative contributions of resource supply, and predator control change along a nutrient gradient. We argue that (a) predator control on large-bodied zooplankton is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations--that is, the predation pressure can be low or high at all nutrient levels. A quantile regression revealed that the median share of the predator-sensitive Daphnia to the total cladoceran biomass was significantly related unimodally to TP, while the 10% and 90% percentiles approached 0 and 100%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality was supported by data on the abundance of potential planktivorous fish (catch net-1 night-1 gill nets with the different mesh sizes [CPUE]). To elucidate the potential cascading effect on phytoplankton, we examined the zooplankton phytoplankton biomass ratio. Even though this ratio was inversely related to CPUE at all TP levels, we found an overall higher ratio in oligotrophic lakes that declined toward low values (typically below 0.2) in hypertrophic lakes. These results suggest that planktivorous fish have a more limited effect on the grazing control of phytoplankton in oligotrophic lakes than in eutrophic lakes, despite similar predator control of large-bodied zooplankton. Accordingly, the phytoplankton yield, expressed as the chlorophyll a-TP ratio, did not relate to CPUE at low TP, but it increased significantly with CPUE at high TP. We conclude that the chances of implementing a successful restoration program using biomanipulation as a tool to reduce phytoplankton biomass increase progressively with increasing TP, but that success in the long term is most likely achieved at intermediate TP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号