首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Native cytoplasmic phenylalanyl-tRNA synthetase from baker's yeast is a tetramer of the alpha 2 beta 2 type. On mild tryptic cleavage it gives rise to a modified alpha 2 beta 2 form that has lost the tRNA(Phe) binding capacity but is still able to activate phenylalanine. In this paper are presented data concerning peptides released by this limited proteolytic conversion as well as those arising from exhaustive tryptic digestion of the truncated beta subunit. Each purified peptide was unambiguously assigned to a unique stretch of the beta subunit amino acid sequence that was recently determined via gene cloning and DNA sequencing. Together with earlier results from affinity labelling studies the present data show that the Lys 172-Ile 173 bond is the unique target of trypsin under mild conditions and that the N-terminal domain of each beta subunit (residues 1-172) contains the major tRNA(Phe) binding sites.  相似文献   

2.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

3.
Moor N  Lavrik O  Favre A  Safro M 《Biochemistry》2003,42(36):10697-10708
The interaction of human phenylalanyl-tRNA synthetase, a eukaryotic prototype with an unknown three-dimensional structure, with the tRNA(Phe) acceptor end was studied by s(4)U-induced affinity cross-linking with human tRNA(Phe) derivatives site-specifically substituted at the single-stranded 3' end. Two different subunits of the enzyme bind two adjacent nucleotides of the tRNA(Phe) 3' end: nucleotide 76 is associated with the catalytic alpha subunit, while nucleotide 75 is in contact with the beta subunit. The binding mode is similar to that revealed previously in structural and affinity cross-linking studies of the prokaryotic Thermus thermophilus phenylalanyl-tRNA synthetase. Our results suggest that the distinctive features of tRNA(Phe) acceptor end binding are conserved for the eukaryotic and prokaryotic tetrameric phenylalanyl-tRNA synthetases despite their significant differences in the domain composition of the beta subunits. The data from affinity cross-linking experiments with human phenylalanyl-tRNA synthetase complexed with small ligands (ATP and/or phenylalanine or a stable synthetic analogue of phenylalanyl adenylate) reveal that the location of the tRNA(Phe) acceptor end varies with the presence and nature of other substrates. The lack of substrate activity of human tRNA(Phe) substituted with s(4)U at the 3'-terminal position suggests that base-specific interactions of the terminal adenosine are critically important for a productive interaction. The conformational rearrangement of the tRNA 3' end induced by the other substrates and dictated by base-specific contacts of the terminal nucleotide is an additional means of ensuring the phenylalanylation specificity in both prokaryotic and eukaryotic systems.  相似文献   

4.
tRNA(Phe) in which the adenine and cytosine rings in the aminoacyl arm and in the anticodon loop were converted to alkylating derivatives by mild treatment with methyl chlorotetrolate was used to study the tRNA(Phe)-yeast phenylalanyl-tRNA(Phe) synthetase interaction. At neutral pH, modified tRNA inhibited the enzyme competitively. At pH 9 this binding is accompanied by irreversible inactivation of the enzyme due to alkylation of the alpha subunit of the synthetase. Such a derivatization of tRNA could probably be used to investigate the interaction of other tRNAs with their cognate synthetases.  相似文献   

5.
Roy H  Ling J  Irnov M  Ibba M 《The EMBO journal》2004,23(23):4639-4648
Translation of the genetic code requires attachment of tRNAs to their cognate amino acids. Errors during amino-acid activation and tRNA esterification are corrected by aminoacyl-tRNA synthetase-catalyzed editing reactions, as extensively described for aliphatic amino acids. The contribution of editing to aromatic amino-acid discrimination is less well understood. We show that phenylalanyl-tRNA synthetase misactivates tyrosine and that it subsequently corrects such errors through hydrolysis of tyrosyl-adenylate and Tyr-tRNA(Phe). Structural modeling combined with an in vivo genetic screen identified the editing site in the B3/B4 domain of the beta subunit, 40 angstroms from the active site in the alpha subunit. Replacements of residues within the editing site had no effect on Phe-tRNA(Phe) synthesis, but abolished hydrolysis of Tyr-tRNA(Phe) in vitro. Expression of the corresponding mutants in Escherichia coli significantly slowed growth, and changed the activity of a recoded beta-galactosidase variant by misincorporating tyrosine in place of phenylalanine. This loss in aromatic amino-acid discrimination in vivo revealed that editing by phenylalanyl-tRNA synthetase is essential for faithful translation of the genetic code.  相似文献   

6.
7.
Covalent modification of Escherichia coli tyrosyl-tRNA synthetase (TyrRS) by the 2',3'-dialdehyde derivative of tRNATyr (tRNAox) resulted in a time-dependent inactivation of both ATP-PPi exchange and tRNA aminoacylation activities of the enzyme. In parallel with the inactivation, covalent incorporation of approximately 1 mol of [14C]tRNATyrox/mol of the dimeric synthetase occurred. Intact tRNATyr protected the enzyme against inactivation by the tRNA dialdehyde. Treatment of the TyrRS-[14C]tRNATyr covalent complex with alpha-chymotrypsin produced two labeled peptides (A and B) that were isolated and identified by sequence analysis. Peptides A and B are adjacent and together span residues 227-244 in the primary structure of the enzyme. The three lysine residues in this sequence (lysines-229, -234, and -237) are labeled in a mutually exclusive fashion, with lysine-234 being the most reactive. By analogy with the known three-dimensional structure of the homologous tyrosyl-tRNA synthetase from Bacillus stearothermophilus, these lysines should be part of the C-terminal domain which is presumed to bind the cognate tRNA. Interestingly, the labeled TyrRS structure showed significant similarities to the structure around the lysine residue of E. coli methionyl-tRNA synthetase which is the most reactive toward tRNAMetf(ox) (lysine-335) [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180].  相似文献   

8.
FRS1 and FRS2, the structural genes encoding the large (alpha) and small (beta) subunits of yeast phenylalanyl-tRNA synthetase (PheRS) were placed under the control of the lacZ promoter by creating an artificial operon. The FRS2 gene was fused next to the promoter, followed by a 14 base pair intergenic sequence containing a translation reinitiation site in front of the FRS1 coding sequences. The engineered PheRS has 16 N-terminal amino acids from beta-galactosidase fused to the beta subunit. However, the purified protein shows a Km value for tRNA(Phe) that is indistinguishable from that of the the native enzyme. The product of the FRS2-FRS1 operon is not able to complement thermosensitive E. coli PheRS, indicating the lack of heterologous aminoacylation in vivo. We made a deletion in the FRS2 gene that removed about 150 amino terminal residues of the beta subunit. The truncated protein showed intact ATP-PPi exchange, whereas tRNA aminoacylation was lost. This result is similar to that of limited proteolysis performed on the native enzyme that yielded a tetrameric alpha 2 beta'2 structure, able to form aminoacyladenylate but unable to bind tRNA(Phe). A deletion of 50 amino acids from the carboxyl terminus of the beta chain resulted in the loss of both enzyme activities; this suggests the participation of the C-terminal end of the beta subunit in the active site or in subunit assembly to yield a tetrameric functional enzyme.  相似文献   

9.
The crystal structure of the ternary complex of (alphabeta)(2) heterotetrameric phenylalanyl-tRNA synthetase (PheRS) from Thermus thermophilus with cognate tRNA(Phe) and a nonhydrolyzable phenylalanyl-adenylate analogue (PheOH-AMP) has been determined at 3.1 A resolution. It reveals conformational changes in tRNA(Phe) induced by the PheOH-AMP binding. The single-stranded 3' end exhibits a hairpin conformation in contrast to the partial unwinding observed previously in the binary PheRS.tRNA(Phe) complex. The CCA end orientation is stabilized by extensive base-specific interactions of A76 and C75 with the protein and by intra-RNA interactions of A73 with adjacent nucleotides. The 4-amino group of the "bulged out" C75 is trapped by two negatively charged residues of the beta subunit (Glubeta31 and Aspbeta33), highly conserved in eubacterial PheRSs. The position of the A76 base is stabilized by interactions with Hisalpha212 of motif 2 (universally conserved in PheRSs) and class II-invariant Argalpha321 of motif 3. Important conformational changes induced by the binding of tRNA(Phe) and PheOH-AMP are observed in the catalytic domain: the motif 2 loop and a "helical" loop (residues 139-152 of the alpha subunit) undergo coordinated displacement; Metalpha148 of the helical loop adopts a conformation preventing the 2'-OH group of A76 from approaching the alpha-carbonyl carbon of PheOH-AMP. The unfavorable position of the terminal ribose stems from the absence of the alpha-carbonyl oxygen in the analogue. Our data suggest that the idiosyncratic feature of PheRS, which aminoacylates the 2'-OH group of the terminal ribose, is dictated by the system-specific topology of the CCA end-binding site.  相似文献   

10.
Four mutants of pheV, a gene coding for tRNA(Phe) in Escherichia coli, share the characteristic that when carried in the plasmid pBR322, they lose the capacity of wild-type pheV to complement the thermosensitive defect in a mutant of phenylalanyl-tRNA synthetase. One of these mutants, leading to the change C2----U2 in tRNA(Phe), is expressed about 10-fold lower in transformed cells than wild-type pheV. This mutant, unlike the remaining three (G15----A15, G44----A44, m7G46----A46), can recover the capacity to complement thermosensitivity when carried in a plasmid of higher copy number. The other three mutants, even when expressed at a similar level, remain unable to complement thermosensitivity. A study of charging kinetics suggests that the loss of complementation associated with these mutants is due to an altered interaction with phenylalanyl-tRNA synthetase. The mutant gene pheV (U2), when carried in pBR322, can also recover the capacity to complement thermosensitivity through a second-site mutation outside the tRNA structural gene, in the discriminator region. This mutation, C(-6)----T(-6), restores expression of the mutant U2 to about the level of wild-type tRNA(Phe).  相似文献   

11.
The influence of phenylalanyl-tRNA synthetase and seryl-tRNA synthetase on the conformation and structural kinetics of yeast tRNA Phe was investigated. Ethidium substituted for dihydrouracil at position 16 or 17 was used as a structural probe, showing the existence of three conformational states in tRNA. The distribution of states (T1, T2, T3) is changed only by the cognate synthetase towards T3 which probably is related to the X-ray structure. The binding of phenylalanyl-tRNA synthetase leads to an about 10-fold increase in the fast transition T1 in equilibrium or formed from T2 which has been assigned to changes in the anticodon loop conformation and to a 2-3 fold increase in the slow transition which probably extends to other parts of the tRNA molecule. The observed rates for the transition T2 in equilibrium or formed from T3 are close to that observed for the transfer of the activated phenylalanine to tRNA Phe. This raises the possibility that the conformational transition in tRNA is the rate limiting step in the charging reaction.  相似文献   

12.
13.
The synthesis of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) can be catalyzed in vitro by a tetrameric tRNA synthetase complex from rat liver containing two lysyl-tRNA synthetase and two arginyl-tRNA synthetase subunits. This reaction required ATP, AMP, 50-100 microM zinc, and inorganic pyrophosphatase. We show here that AMP can be omitted from the reaction and that the zinc levels can be markedly reduced provided catalytic amounts of tRNA(Lys) are added to the reaction mixture. Ap4A synthesis with purified tRNA(Lys) isoacceptors showed that the minor species, tRNA(4Lys), was 3-fold more active than either of the two major tRNA(Lys) species, tRNA(2Lys) and tRNA(5Lys). No activity could be demonstrated with tRNA(Lys) from Escherichia coli or with tRNA(Lys) or tRNA(Phe) from yeast. Aminoacylation of tRNA(4Lys) was strictly required as determined by the fact that Ap4A synthesis was not observed until aminoacylation was nearly complete, inhibitors of aminoacylation blocked Ap4A synthesis, and there was a strict requirement for added lysine. None of the above observations could be demonstrated, however, when lysyl-tRNA(Lys) was directly supplied to the reaction mixture. Optimum Ap4A synthesis was obtained by the addition of 1 mol of tRNA(Lys)/mol of the synthetase complex. This reaction is unique because it does not require the prior formation of an aminoacyl-AMP intermediate and because it can actively synthesize Ap4A at physiological zinc concentrations. The preferential role for tRNA(4Lys) in Ap4A synthesis is consistent with its prior implication in cell division.  相似文献   

14.
The respiratory defect of pet mutants of Saccharomyces cerevisiae assigned to complementation group G120 has been ascribed to their inability to acylate the mitochondrial phenylalanyl tRNA. A fragment of wild type yeast genomic DNA capable of complementing the genetic lesion of G120 mutants has been cloned by transformation with a yeast genomic recombinant library of a representative mutant from this complementation group. The gene designated as MSF1 has been subcloned on a 2.2-kilobase pair fragment and its nucleotide sequence determined. The predicted protein product of MSF1 has a molecular weight of 55,314 and has several domains of high primary sequence homology to the alpha subunit of the Escherichia coli phenylalanyl-tRNA synthetase. Based on the phenotype of G120 mutants and the homology to the bacterial protein, MSF1 is proposed to code for the alpha subunit of yeast mitochondrial phenylalanyl-tRNA synthetase. Disruption of the chromosomal copy of MSF1 in the respiratory-competent haploid strain W303-1B induces a phenotype similar to G120 mutants but does not affect cell viability, indicating that the cytoplasmic phenylalanyl-tRNA synthetase of yeast is encoded by a separate gene. Although the E. coli and yeast mitochondrial aminoacyl-tRNA synthetases are sufficiently similar in their primary sequences to suggest a common evolutionary origin, they have undergone significant changes as evidenced by the low homology in some regions of the polypeptide chains and the presence in the mitochondrial enzyme of two domains that are lacking in the bacterial phenylalanyl-tRNA synthetase.  相似文献   

15.
Neither the tertiary structure nor the location of active sites are known for phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 structure), a member of class II aminoacyl-tRNA synthetases. In an attempt to detect the phenylalanine (Phe) binding site, two Escherichia coli PheRS mutant strains (pheS), which were resistant to p-fluorophenylalanine (p-F-Phe) were analysed genetically. The pheS mutations were found to cause Ala294 to Ser294 exchanges in the alpha subunits from both independent strains. This alteration (S294) resided in the well-conserved C-terminal part of the alpha subunit, precisely within motif 3, a typical class II tRNA synthetase sequence. We thus propose that motif 3 participates in the formation of the Phe binding site of PheRS. Mutation S294 was also the key for proposing a mechanism by which the substrate analogue p-F-Phe is excluded from the enzymatic reaction; this may be achieved by steric interactions between the para-position of the aromatic ring and the amino acid residue at position 294. The Phe binding site model was then tested by replacing the alanine at position 294 as well as the two flanking phenylalanines (positions 293 and 295) by a number of selected other amino acids. In vivo and in vitro results demonstrated that Phe293 and Phe295 are not directly involved in substrate binding, but replacements of those residues affected PheRS stability. However, exchanges at position 294 altered the binding of Phe, and certain mutants showed pronounced changes in specificity towards Phe analogues. Of particular interest was the Gly294 PheRS in which presumably an enlarged cavity for the para position of the aromatic ring allowed an increased aminoacylation of tRNA with p-F-Phe. Moreover, the larger para-chloro and para-bromo derivatives of Phe could interact with this enzyme in vitro and became highly toxic in vivo. The possible exploitation of the Gly294 mutant PheRS for the incorporation of non-proteinogenic amino acids into proteins is discussed.  相似文献   

16.
Human phenylalanyl-tRNA synthetase (PheRS) was cloned and expressed in Escherichia coli. The cDNAs of the alpha and beta subunits were cloned into pET-21b(+) and pET-28b(+) vectors. The 6x histidine-tagged (HT) plasmids pET-21_HTbeta, pET-28_HTalpha, and pET-28_HTbeta were constructed. Three different types of (alphabeta)(2) heterodimers of human PheRS carrying HT at the N-terminus of either of two alpha or beta subunits or simultaneously on both of them were overproduced and purified. The heterodimeric protein with HT appended to the N-terminus of the beta subunit revealed no activity in the aminoacylation reaction as opposed to those with HT on the alpha subunit. It is known from the structure of the Thermus thermophilus Phe system that the N-terminal coiled-coil domain of the alpha subunit is involved in the binding of cognate tRNA(Phe). Our data demonstrate that a histidine-tagged N-terminal extension appended to the alpha subunit does not affect the kinetic parameters of tRNA(Phe) aminoacylation. Elimination of the HT from the alpha subunit by thrombin cleavage leads to nonspecific splitting of the enzyme that occurs in parallel to the main reaction. In addition to the tagged proteins the properly assembled heterodimer containing intact alpha and beta subunits free of HT was overproduced and purified. Aminoacylation activity of the overproduced human PheRS in the crude bacterial extract is two orders of magnitude higher than the corresponding activity in human placenta and the yield of the recombinant enzyme overproduced in E. coli is five times higher.  相似文献   

17.
Phenylalanyl-tRNA synthetase from the extreme thermophilic bacterium Thermus thermophilus can incorporate more than one molecule of phenylalanine into the tRNA(Phe). It is shown that the 'hyperaminoacylated' tRNA(Phe) is the bis-2',3'-O-phenylalanyl-tRNA(Phe), and its formation is typical for the thermophilic enzyme but does not occur for E. coli phenylalanyl-tRNA synthetase under the same conditions.  相似文献   

18.
19.
Reactivity of the histidyl groups of yeast phenylalanyl-tRNA synthetase was studied in the absence or presence of substrates. In the absence of substrates about 10 histidine residues were found to react with similar kinetic constants. Phenylalanine at 10(-3) M was found to protect two histidyl residues; increasing the amino acid concentration to 5 . 10(-3) M resulted in the protection of two more histidyl groups. tRNAPhe did not afford any protection to histidine residues, but acylated phenylalanyl-tRNA (Phe-tRNAPhe) protected two of the four histidyl groups already protected by phenylalanine. These results suggest the existence of two different sets of accepting sites for phenylalanine: one specific for the free amino acid, the other one specific for the amino acid linked to the tRNA, but being accessible to free phenylalanine, with a somewhat lower binding constant, ATP was found to mask around four histidyl residues against diethylpyrocarbonate modification. By photoirradiation of enzyme-phenylalanine complex in the presence of rose bengale, a significant amount of amino acid was bound to the alpha subunit (Mr = 73 000) of phenylalanyl-tRNA synthetase, confirming that the amino acid binding site is located on this subunit, as previously suggested by modification of thiol groups. Upon irradiation of an enzyme-tRNA complex, almost no covalent binding of tRNA occurred during enzyme inactivation, suggesting that the histidyl residues involved in the enzymic activity are not required for tRNA binding.  相似文献   

20.
The KMSKS pattern, conserved among several aminoacyl-tRNA synthetase sequences, was first recognized in the Escherichia coli methionyl-tRNA synthetase through affinity labelling with an oxidized reactive derivative of tRNA(Met)f. Upon complex formation, two lysine residues of the methionyl-tRNA synthetase (Lys61 and 335, the latter being part of the KMSKS sequence) could be crosslinked by the 3'-acceptor end of the oxidized tRNA. Identification of an equivalent reactive lysine residue at the active centre of tyrosyl-tRNA synthetase designated the KMSKS sequence as a putative component of the active site of methionyl-tRNA synthetase. To probe the functional role of the labelled lysine residue within the KMSKS pattern, two variants of methionyl-tRNA synthetase containing a glutamine residue at either position 61 or 335 were constructed by using site-directed mutagenesis. Substitution of Lys61 slightly affected the enzyme activity. In contrast, the enzyme activities were very sensitive to the substitution of Lys335 by Gln. Pre-steady-state analysis of methionyladenylate synthesis demonstrated that this substitution rendered the enzyme unable to stabilize the transition state complex in the methionine activation reaction. A similar effect was obtained upon substituting Lys335 by an alanine instead of a glutamine residue, thereby excluding an effect specific for the glutamine side-chain. Furthermore, the importance of the basic character of Lys335 was investigated by studying mutants with a glutamate or an arginine residue at this position. It is concluded that the N-6-amino group of Lys335 plays a crucial role in the activation of methionine, mainly by stabilizing the transient complex on the way to methionyladenylate, through interaction with the pyrophosphate moiety of bound ATP-Mg2+. We propose, therefore, that the KMSKS pattern in the structure of an aminoacyl-tRNA synthetase sequence represents a signature sequence characteristic of both the pyrophosphate subsite and the catalytic centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号