首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggrecanases are considered to play a key role in the destruction of articular cartilage during the progression of arthritis. Here we report that the N-terminal inhibitory domain of tissue inhibitor of metalloproteinases 3 (N-TIMP-3), but not TIMP-1 or TIMP-2, inhibits glycosaminoglycan release from bovine nasal and porcine articular cartilage explants stimulated with interleukin-1alpha or retinoic acid in a dose-dependent manner. This inhibition is due to the blocking of aggrecanase activity induced by the catabolic factors. Little apoptosis of primary porcine chondrocytes is observed at an effective concentration of N-TIMP-3. These results suggest that TIMP-3 may be a candidate agent for use against cartilage degradation.  相似文献   

2.
3.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

4.
Lipopolysaccharide (LPS) induces matrix degradation and markedly stimulates the production of several cytokines, i.e., interleukin-1β, −6, and −10, by disc cells and chondrocytes. We performed a series of experiments to compare cellular responses of cells from the bovine intervertebral disc (nucleus pulposus and annulus fibrosus) and from bovine articular cartilage to LPS. Alginate beads containing cells isolated from bovine intervertebral discs and articular cartilage were cultured with or without LPS in the presence of 10% fetal bovine serum. The DNA content and the rate of proteoglycan synthesis and degradation were determined. In articular chondrocytes, LPS strongly suppressed cell proliferation and proteoglycan synthesis in a dose-dependent manner and stimulated proteoglycan degradation. Compared with articular chondrocytes, nucleus pulposus cells responded in a similar, although less pronounced manner. However, treatment of annulus fibrosus cells with LPS showed no significant effects on proteoglycan synthesis or degradation. A slight, but statistically significant, inhibition of cell proliferation was observed at high concentrations of LPS in annulus fibrosus cells. Thus, LPS suppressed proteoglycan synthesis and stimulated proteoglycan degradation by articular chondrocytes and nucleus pulposus cells. The effects of LPS on annulus fibrosus cells were minor compared with those on the other two cell types. The dissimilar effects of LPS on the various cell types suggest metabolic differences between these cells and may further indicate a divergence in pathways of LPS signaling and a differential sensitivity to exogenous stimuli such as LPS.This work was supported in part by NIH grants 2-P50-AR39239 and 1-P01-AR48152.  相似文献   

5.
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development.  相似文献   

6.
The control of chondrocyte-mediated degradation of aggrecan has been studied in rat chondrosarcoma cells and bovine cartilage explants treated with either IL-1 or retinoic acid. The capacity of glucosamine to inhibit the aggrecanase-mediated response (J. D. Sandy, D. Gamett, V. Thompson, and C. Verscharen (1998) Biochem. J. 335, 59-66) has been extended to an investigation of the effect of other hexosamines. Mannosamine inhibits the aggrecanase response to both IL-1 and RA at about one-tenth the concentration of glucosamine in both rat cell and bovine explant systems. This effect of mannosamine appears to be due to its capacity to inhibit the synthesis of glycosylphosphatidylinositol (GPI)-linked proteins by chondrocytes since the GPI synthesis inhibitor 2-deoxyfluoroglucose (2-DFG) also inhibited the aggrecanase response to IL-1b and RA in rat cells. Moreover, phosphatidylinositol-specific phospholipase C (PIPLC) treatment of rat cells markedly inhibited the aggrecanase response to IL-1b and RA. These inhibitory effects of mannosamine, 2-DFG, and PIPLC in rat cells did not appear to be due to an interference with general biosynthetic activity of the cells as measured by [3H]proline incorporation into secreted proteins. We suggest that the aggrecanase response by chondrocytes to IL-1 and RA is dependent on the activity of a GPI-anchored protein on the chondrocyte cell surface.  相似文献   

7.
The culture of bovine synovial or capsular tissue generated proteoglycan-degrading activity. When these tissues were incubated with living or dead bovine articular cartilage significantly more proteoglycan-degrading activity was revealed. The activity was present in a soluble form and required protein synthesis for its generation. The conditioned medium did not contain matrixin activity, although experiments with proteinase inhibitors suggested that the activity was due to a metalloproteinase. Western blotting of the aggrecan fragments suggested cleavage of aggrecan within the interglobular domain at the "aggrecanase" site, but not at the major matrixin site. N-terminal sequencing confirmed cleavage of aggrecan at a number of glutamyl bonds, including the aggrecanase site in the interglobular domain. We conclude that cultured synovial or capsular tissue produces soluble aggrecanase and an enzyme which releases aggrecanase from cartilage, possibly by cleavage of a chondrocyte membrane-bound form of aggrecanase.  相似文献   

8.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPalpha), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPalpha gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPalpha expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPalpha on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

9.
We describe the isolation and the ultrastructural characteristics of adult bovine articular chondrocytes in vitro. Slices of bovine articular cartilage undergo sequential digestions with pronase and collagenase in order to release cells. Chondrocytes are plated at high density (1 x 10(5) cells/cm2) in culture dishes or roller bottles with Ham's F-12 medium, supplemented with 10% fetal bovine serum. Before culture, chondrocytes are freed of surrounding territorial matrix. Within the first few days of culture they re-establish a territorial matrix. As time progresses, chondrocytes synthesize both territorial and extraterritorial matrices. The matrices are rich in collagen fibrils and ruthenium red-positive proteoglycans. These features are most apparent in mass roller cultures in which aggregates of cells and matrix appear as long streaks and nodules. This morphology reveals an organization of chondrocytes and their matrices that is similar to that of the parent articular cartilage in vivo.  相似文献   

10.
The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection.  相似文献   

11.
12.
Articular chondrocytes from rheumatoid joints have been shown to express class II major histocompatibility (MHC) antigens that were correlated with the presence of interferon-gamma (IFN-γ) in the inflamed joint. Chondrocytes expressing MHC antigens function as antigens function as antigen presenting cells and thus stimulate lymphocyte proliferation. These responses suggest a powerful role for the IFN-γ stimulation of chondrocytes. The present studies were designed to examine the functional role of chondrocytes exposed to IFN-γ during cartilage degradation that occurs in synovial disease. Destruction of cartilage in arthritis is partially attributable to metalloproteinases released by the chondrocytes in response to interleukin-1 (IL-1). Bovine articular chondrocytes treated with interleukin-1 alpha (IL-1α) produced enhanced levels of stromelysin mRNA, however, Northern blots could not determine the percentage of cells responding. Exposure of bovine articular chondrocytes to IFN-γ induced the expression of bovine HLA-DR (boHLA-DR) antigen in 50% of the cells. Using a modified cell sorting technique, chondrocytes that expressed class II MHC antigens produced two fold greater stromelysin mRNA than chondrocytes that did not express this antigen. In contrast, collagen type II mRNA levels were similar in chondrocytes, regardless of the expression of class II MHC antigens. In situ hybridization studies showed that less than half of all cartilage chondrocytes were induced to synthesize stromelysin mRNA. These observations suggest that IFN-γ stimulates specific subpopulations of chondrocytes to be functionally active in inflammation-induced metalloprotease secretion. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPα), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPα gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPα expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPα on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

14.
Aggrecanases that include ADAMTS1, 4, 5, 8, 9 and 15 are considered to play key roles in aggrecan degradation in osteoarthritic cartilage. Here we demonstrate that calcium pentosan polysulfate (CaPPS) directly inhibits the aggrecanase activity of ADAMTS4 without affecting the mRNA expression of the ADAMTS species in interleukin-1alpha-stimulated osteoarthritic chondrocytes. Synthetic peptides corresponding to specific regions of the thrombospondin type 1 repeat, cysteine-rich or spacer domain of ADAMTS4 inhibit the binding to immobilized CaPPS. These data suggest that CaPPS could function as chondroprotective agent for the treatment of osteoarthritis by inhibition of ADAMTS4 through interaction with the C-terminal ancillary domain.  相似文献   

15.
16.
Elevated levels of PGE(2) have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE(2) in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE(2) (0.1-10 muM). PGE(2) inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE(2) also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE(2) inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE(2) with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE(2) and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE(2), while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE(2) (10 muM) and reversed by celecoxib (2 muM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE(2) receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE(2) inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.  相似文献   

17.
18.
Overexpression of interleukin (IL-)17 has recently been shown to be associated with a number of pathological conditions. Because IL-17 is found at high levels in the synovial fluid surrounding cartilage in patients with inflammatory arthritis, the present study determined the direct effect of IL-17 on articular cartilage. As shown herein, IL-17 was a direct and potent inducer of matrix breakdown and an inhibitor of matrix synthesis in articular cartilage explants. These effects were mediated in part by leukemia inhibitory factor (LIF), but did not depend on interleukin-1 activity. The mechanism whereby IL-17 induced matrix breakdown in cartilage tissue appeared to be due to stimulation of activity of aggrecanase(s), not matrix metalloproteinase(s). However, IL-17 upregulated expression of matrix metalloproteinase(s) in chondrocytes cultured in monolayer. In vivo, IL-17 induced a phenotype similar to inflammatory arthritis when injected into the intra-articular space of mouse knee joints. Furthermore, a related protein, IL-17E, was found to have catabolic activity on human articular cartilage. This study characterizes the mechanism whereby IL-17 acts directly on cartilage matrix turnover. Such findings have important implications for the treatment of degenerative joint diseases such as arthritis.  相似文献   

19.
Tissue trauma induces an inflammatory response associated with a cytokine release that may engage complement pathways. Cytokine-mediated complement expression may contribute to cartilage degradation. Hence, we analysed the complement expression profile in primary articular and non-articular chondrocytes and its interrelation with cytokines. The expression of the anaphylatoxin receptors (C3aR and C5aR) and the complement regulatory proteins (CPRs) CD35, CD46, CD55 and CD59 was studied in cultured articular, auricular and nasoseptal chondrocytes using RTD-PCR and immunofluorescence labelling. The complement profile of peripheral blood mononuclear cells (PBMCs) was opposed to the expression in articular chondrocytes. The time-dependent regulation (6 and 24?h) of these complement factors was assessed in articular chondrocytes in response to the cytokines TNF??, IL-10 or TNF?? combined with IL-10 (each 10?ng/mL). C3aR, C5aR, CD46, CD55 and CD59 but almost no CD35 mRNA was expressed in any of chondrocyte types studied. The anaphylatoxin receptor expression was lower and that of the CRPs was higher in chondrocytes when compared with PBMCs. The majority of the studied complement factors were expressed at a significantly lower level in non-articular chondrocytes compared with the articular chondrocytes. TNF?? significantly increased the C3aR expression in chondrocytes after 6 and 24?h. TNF?? + IL-10 significantly downregulated C5aR and IL-10 significantly inhibited the CD46 and CD55 gene expression after 24?h. C5aR and CD55 could be localised in cartilage in situ. Anaphylatoxin receptors and CRPs are regulated differentially by TNF?? and IL-10. Whether cytokine-induced complement activation occurs in response to cartilage trauma has to be further identified.  相似文献   

20.
Mechanisms involved in cartilage proteoglycan catabolism.   总被引:19,自引:0,他引:19  
The increased catabolism of the cartilage proteoglycan aggrecan is a principal pathological process which leads to the degeneration of articular cartilage in arthritic joint diseases. The consequent loss of sulphated glycosaminoglycans, which are intrinsic components of the aggrecan molecule, compromises both the functional and structural integrity of the cartilage matrix and ultimately renders the tissue incapable of resisting the compressive loads applied during joint articulation. Over time, this process leads to irreversible cartilage erosion. In situ degradation of aggrecan is a proteolytic process involving cleavage at specific peptide bonds located within the core protein. The most well characterised enzymatic activities contributing to this process are engendered by zinc-dependent metalloproteinases. In vitro aggrecanolysis by matrix metalloproteinases (MMPs) has been widely studied; however, it is now well recognised that the principal proteinases responsible for aggrecan degradation in situ in articular cartilage are the aggrecanases, two recently identified isoforms of which are members of the 'A Disintegrin And Metalloproteinase with Thrombospondin motifs' (ADAMTS) gene family. In this review we have described: (i) the development of monoclonal antibody technologies to identify catabolic neoepitopes on aggrecan degradation products; (ii) the use of such neoepitope antibodies in studies designed to characterise and identify the enzymes responsible for cartilage aggrecan metabolism; (iii) the biochemical properties of soluble cartilage aggrecanase(s) and their differential expression in situ; and (iv) model culture systems for studying cartilage aggrecan catabolism. These studies have clearly established that 'aggrecanase(s)' is primarily responsible for the catabolism and loss of aggrecan from articular cartilage in the early stages of arthritic joint diseases that precede overt collagen catabolism and disruption of the tissue integrity. At later stages, when collagen catabolism is occurring, there is evidence for MMP-mediated degradation of the small proportion of aggrecan remaining in the tissue, but this occurs independently of continued aggrecanase activity. Furthermore, the catabolism of link proteins by MMPs is also initiated when overt collagen degradation is evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号