首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Roces F 《Oecologia》1990,83(2):261-262
Summary During recruitment, workers of Acromyrmex lundi are conditioned to the odor of the food fragment initially carried by the scout worker. The learned odor cue is used as a decision criterion during food collection.  相似文献   

2.
3.
4.
We investigated the prevalence of entomopathogenic fungi associated with leaf-cutting ant colonies in a small area of tropical forest in Panama. There was a high abundance of Metarhizium anisopliae var. anisopliae near the colonies. Beauveria bassiana was also detected in the soil, Aspergillus flavus in dump material, and six Camponotus atriceps ants were found infected with Cordyceps sp. Based on a partial sequence of the IGS region, almost all of the M. anisopliae var. anisopliae isolates fell within one of the three main clades of M. anisopliae var. anisopliae, but with there still being considerable diversity within this clade. The vast majority of leaf-cutting ants collected were not infected by any entomopathogenic fungi. While leaf-cutting ants at this site must, therefore, regularly come into contact with a diversity of entomopathogenic fungi, they do not appear to be normally infected by them.  相似文献   

5.
Discriminating between group members and strangers is a key feature of social life. Nestmate recognition is very effective in social insects and is manifested by aggression and rejection of alien individuals, which are prohibited to enter the nest. Nestmate recognition is based on the quantitative variation in cuticular hydrocarbons, which can include heritable cues from the workers, as well as acquired cues from the environment or queen-derived cues. We tracked the profile of six colonies of the ant Camponotus aethiops for a year under homogeneous laboratory conditions. We performed chemical and behavioral analyses. We show that nestmate recognition was not impaired by constant environment, even though cuticular hydrocarbon profiles changed over time and were slightly converging among colonies. Linear hydrocarbons increased over time, especially in queenless colonies, but appeared to have weak diagnostic power between colonies. The presence of a queen had little influence on nestmate discrimination abilities. Our results suggest that heritable cues of workers are the dominant factor influencing nestmate discrimination in these carpenter ants and highlight the importance of colony kin structure for the evolution of eusociality.  相似文献   

6.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

7.
8.
9.
Thelohania solenopsae is a pathogen of the red imported fire ant, Solenopsis invicta, which debilitates queens and eventually causes the demise of colonies. Reductions of infected field populations signify its potential usefulness as a biological control agent. Thelohania solenopsae can be transmitted by introducing infected brood into a colony. The social forms of the fire ant, that is, monogyny (single queen per colony) or polygyny (multiple queens per colony), are associated with different behaviors, such as territoriality, that affect the degree of intercolony brood transfer. T. solenopsae was found exclusively in polygyne colonies in Florida. Non-synchronous infections of queens and transovarial transmission favor the persistence and probability of detecting infections in polygynous colonies. However, queens or alates with the monogyne genotype can be infected, and infections in monogyne field colonies have been reported from Louisiana and Argentina. Limited independent colony-founding capability and shorter dispersal of alate queens with the polygyne genotype relative to monogyne alates may facilitate the maintenance of infections in local polygynous populations. Demise of infected monogyne colonies can be twice as fast as in polygyne colonies and favors the pathogen's persistence in polygyne fire ant populations. The social form of the fire ant reflects different physiological and behavioral aspects of the queen and colony that will impact T. solenopsae spread and ultimate usefulness for biological control.  相似文献   

10.
It is well known that ants can use cuticular hydrocarbons (CHCs) as a specific recognition cue. Most previous studies addressed the perception of CHCs occurring on the cuticle. However, the presence of CHCs in the environment (e.g., on the substrate) and the role of these compounds as a signal cue are less clear.  相似文献   

11.
F. Roces 《Insectes Sociaux》1994,41(3):235-239
Summary Recruited workers of the leaf-cutting antAcromyrmex lundi learn the odour of the food fragment initially carried by a successful scout, and use this cue as a decision criterion during food collection. Citral, a natural deterrent odour, can also be associated as a food signal, showing how powerful olfactory learning is in this species. The role of both food-odour learning and a previously reported leaf-marking pheromone during diet selection by leaf-cutting ants is discussed.  相似文献   

12.
Summary. Mature colonies of Atta leaf-cutting ants are dominant herbivores throughout the Neotropics. Although young colonies have natural enemies, mature colonies, which live in extensive nests containing millions of workers, currently have no recognised predators. New World army ants (Ecitoninae) are specialist social predators of other ants, and the army ant Nomamyrmex esenbeckii, a primarily subterranean species, is known to prey upon young Atta colonies. Here we present the results of the first long-term study of the predator-prey interaction between N. esenbeckii and Atta. Our study establishes the army ant N. esenbeckii as the only known predator capable of successfully attacking and killing mature as well as young colonies of Atta leaf-cutting ants. In natural raids, and experimental tests, Atta rapidly recruited their largest workers (majors) as a specific defensive response to N. esenbeckii raiders and both taxa used their largest individuals in the frontline of battles. The deployment and behaviour of these large workers demonstrates a size-related division of labour and agrees with the predictions of Lanchesters Linear Law of Combat. Both taxa also used cooperative combat teams to overwhelm large combatants from the other side. The success of N. esenbeckii raids varied greatly, such that they were prevented from entering Atta nests in the least successful raids, and completely overran Atta colonies in the most successful raids. The speed and magnitude of the defensive response of mature Atta colonies was key in determining the level of success of N. esenbeckii raids.Received 12 December 2003; revised 25 March 2004; accepted 1 April 2004.Work conducted at the Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Ancon, Republic of Panama  相似文献   

13.
Water-loss rates increase after mating in queens of the harvester ant Pogonomyrmex barbatus (Formicidae: Myrmicinae), then increase again after the mated queens excavate an incipient nest. We determined the mechanistic basis for these increased water-loss rates by examining cuticular permeability, respiratory water loss, metabolic rates, and cuticular hydrocarbons for queens at three stages in the mating sequence: unmated alate queens, newly mated dealate queens, and mated queens excavated from their incipient nest. Both total water loss and cuticular transpiration increased significantly following mating, with cuticular transpiration accounting for 97% of the increased water loss. In contrast, metabolic rate and respiratory water loss were unaffected by mating stage. The total quantity of cuticular hydrocarbons did not vary by mating stage. However, relative amounts of four of the most abundant cuticular hydrocarbons did vary by mating stage, as did quantities of n-alkanes and methylalkanes. The general pattern was that percent composition of n-alkanes decreased through the mating sequence, while percent composition of methylalkanes increased over the same sequence. We discuss three mechanisms that might cause these post-mating increases in cuticular permeability. Our data support the hypothesis that part of this increase results from soil particles abrading the cuticle during the process of nest excavation.  相似文献   

14.
The interactions in multiple species infections and effects on the horizontal transmission of three microsporidian species, Vairimorpha disparis, Nosema lymantriae and Endoreticulatus schubergi, infecting Lymantria dispar were evaluated in the laboratory. Simultaneous and sequential inoculations of host larvae were performed and the resulting infections were evaluated. Test larvae were exposed to the inoculated larvae to measure horizontal transmission. Dual species infections demonstrated interspecific competition between Nosema and Vairimorpha in the host larvae, but no observable competition occurred between Endoreticulatus and either of the other microsporidian species. Timing of inoculation was an important factor determining the outcome of competition between Nosema and Vairimorpha. The species inoculated first showed a higher rate of successful establishment; a time lag of 7 days between inoculations allowed the first species to essentially exclude the second. The microsporidia differed in efficiency of horizontal transmission. Nosema and Endoreticulatus were transmitted at very high rates, close to 100%. Horizontal transmission of Vairimorpha was less efficient, ranging from 25% to a maximum of 75%. The patterns of infection observed in inoculated larvae were reflected in the test larvae that acquired infections in the horizontal transmission experiments. Competition with Vairimorpha suppressed horizontal transmission of Nosema after simultaneous and sequential inoculation. In simultaneous inoculation experiments Endoreticulatus had no effect on transmission of Nosema and Vairimorpha.  相似文献   

15.
Interactions among the component members of different symbioses are not well studied. For example, leaf-cutting ants maintain an obligate symbiosis with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about these interactions. Experimental manipulations showed that (i) ants spend more time cutting leaves from a tropical vine, Merremia umbellata, with high versus low endophyte densities, (ii) ants reduce the amount of endophytic fungi in leaves before planting them in their gardens, (iii) the ants'' fungal cultivar inhibits the growth of most endophytes tested. Moreover, the inhibition by the ants'' cultivar was relatively greater for more rapidly growing endophyte strains that could potentially out-compete or overtake the garden. Our results suggest that endophytes are not welcome in the garden, and that the ants and their cultivar combine ant hygiene behaviour with fungal inhibition to reduce endophyte activity in the nest.  相似文献   

16.
Social environment can represent a major source of stress affecting cortisol and/or corticosterone levels, thereby altering the immune response. We have investigated the effects of social isolation on the development of Trypanosoma cruzi infection in female Calomys callosus, a natural reservoir of this protozoan parasite. Animals were divided in groups of five animals each. The animals of one group were kept together in a single cage. In a second group, four females were kept together in a cage with one male. In the final group, five individuals were kept isolated in private cages. The isolated animals showed body weight reduction, decreased numbers of peritoneal macrophages, lower global leucocytes counts, smaller lytic antibody percentage and a significantly higher level of blood parasites compared to the other animals. Their behavior was also altered. They were more aggressive than grouped females, or females exposed to the presence of a male. These results suggest that isolation creates a distinct social behavior in which immunity is impaired and pathogenesis is enhanced.  相似文献   

17.
Behavioral tests with field colonies of Atta laevigata were performed in order to identify the source of the odors used in nestmate recognition. We tested the postpharyngeal (PPG) and mandibular glands (MG) as putative organs producing chemical signals for nestmate recognition. Chemical analyses of PPG were also undertaken. With a series of bioassays, we confirmed that nestmate recognition is based on cephalic odors and that these odors come mainly from the mandibular gland secretion. We show chemical evidence that odors from MG are dispersed all over the cuticle. Although odors from PPG elicited colony-specific behavioral responses, the types of behaviors they elicited differed from those of nestmate recognition of whole ants or MG extracts. PPG secretion was characterized by long-chain alkanes and methyl branched alkanes of low volatility, whereas MG contained volatile ketones and alcohols.  相似文献   

18.
19.
By exposing Spodoptera litura Fabricius larvae to nickel (Ni) in artificial diets for successive three generations, we investigated the impacts of the dietary Ni on growth and immune response of the fifth and sixth instar larvae at 24 h intervals. The time of newly moulted fifth instar larvae was labelled as 0 h. After exposure to 5 mg/kg Ni for two generations, Ni exposure significantly improved larval phenoloxidase activity and encapsulation grade in fifth instar larvae when compared to controls, except for encapsulation grade at 72-120 h in the second generation. However, higher concentrations of Ni (≥10 mg/kg) only significantly reduced encapsulation grade at 72-120 h. In the third generation, insects given higher dietary levels of Ni (≥10 mg/kg) showed lower immune responses and retarded relative growth rate (RGR) compared to controls, but those exposed to lower Ni levels (≤5 mg/kg) had a significantly improved encapsulation grade at 24-72 h. Larvae at lower Ni level (≤5 mg/kg) treatments had significantly higher RGR in comparison with that in controls. There was no significant difference in food relative consumption rate (RCR) and RGR among any treatment of the fifth instar larvae in three successive generations. These results indicated that the type and extent of effects on growth and immune responses of S. litura varied with the Ni concentrations and exposure periods.  相似文献   

20.
To study the dynamics of stage-dependent immune responses in Spodoptera littoralis (Boisd.) larvae (Lepidoptera: Noctuidae), single and superparasitism experiments were carried out using the parasitoid Microplitis rufiventris Kok. (Braconidae: Hymenoptera). Compared to younger (preferred) host larvae, the older (non-preferred) host larvae displayed a vigorous humoral response that often damaged and destroyed the single wasp egg or larva. Superparasitism and host age altered both the cellular and humoral immune responses. Younger host larvae showed a stronger encapsulation response compared to older host larvae. Moreover encapsulation rates in younger hosts (e.g., second instar) decreased with increasing numbers of parasitoid eggs deposited/larvae. In older larvae, the encapsulation rate was low in fourth, less in fifth and absent in sixth instar hosts. Conversely, the order and magnitude of the cellular immune response in S. littoralis hosts were highest in second instar larvae with the first instar larvae being a little lower. The immune response steadily decreased from the third through to the fifth instar and was least obvious in the sixth instar. In contrast, the general humoral immune response was most pronounced in sixth instar larvae and diminished towards younger stages. The results suggest that both cellular and humoral responses are stage-dependent. Wasp offspring in younger superparasitized host larvae fought for host supremacy with only one wasp surviving, while supernumerary wasp larvae generally survived in older superparasitized larvae, but were unable to complete development. Older instars seem to have a method for immobilizing/killing wasp larvae that is not operating in the younger instars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号