首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Locusts are grasshopper species that exhibit phase polyphenism resulting in the expression of gregarious behaviors that favor the development of large devastating bands and swarms. Desert locust preventative management aims to prevent crop damage by controlling populations before they can reach high densities and form mass migrating swarms. The areas of potential gregarization for Desert locust are large and need to be physically assessed by survey teams for efficient preventative management. An ongoing challenge is to be able to guide where prospection surveys should occur depending on local meteorological and vegetation conditions. In this study, we analyzed the relationship between historical prospection data of Desert locust observations from 2005 to 2009 and spatio-temporal statistics of a vegetation index gathered by remote-sensing with the help of multiple models of logistic regression. The vegetation index was a composite Normalized Difference Vegetation Index (NDVI) given every 16 days and at 250 m spatial resolution (MOD13Q1 from MODIS satellite). The statistics extracted from this index were: (1) spatial means at different scales around the prospection point, (2) relative differences of NDVI variation through time before the prospection, and (3) large-scale summary of vegetation quantity. The multi-model framework showed that vegetation development a month and a half before the survey was amongst the best predictors of locust presence. Also, the local vegetation quantity was not enough to predict locust presence. Vegetation quantity on a scale of a few kilometers was a better predictor but varied non-linearly, reflecting specific biotope types that support Desert locust development. Using one of the best logistic regression models and NDVI data, we were able to derive a predictive model of probability of finding locusts in specific areas. This methodology should help in more efficiently focusing survey efforts on specific parts of the gregarization areas based on the predicted probability of locusts being present.  相似文献   

2.
Attempts to uncover the adaptive significance of density-dependent colour polyphenism in the desert locust, Schistocerca gregaria (Orthoptera: Acrididae), have been unsuccessful. Desert locust juveniles can change colour as part of a phenotypically plastic response to changes in local population density known as phase polyphenism. They are typically cryptic in colour at low rearing density (solitarious phase), but become conspicuous at high density (gregarious phase). Recent evidence indicates that this colour change functions interspecifically as an aposematic signal. Other recent evidence, however, suggests that previous attempts to demonstrate an intraspecific function of gregarious coloration in mediating group interactions among locusts may have been confounded by the effects of multiple sensory cues. We reinvestigated the intraspecific function of density-dependent colour polyphenism and specifically controlled for potentially confounding olfactory and tactile cues. We found no effect of gregarious phase (yellow and black) coloration as either a gregarizing stimulus to behaviourally solitarious locusts or as a visual aggregation stimulus behaviourally to gregarious locusts. We did, however, find that nonmoving solitarious phase (green) coloration significantly increased the activity levels of behaviourally gregarious locusts. We cannot explain this result and its biological relevance remains unknown. In the absence of support for the intraspecific visual cue hypothesis, we favour an aposematic perspective on the function of density-dependent colour polyphenism in the desert locust. The aposematic perspective parsimoniously accounts for density-dependent changes in both colour and behaviour. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

3.
Locust phase polyphenism is an extreme form of density-dependent phenotypic plasticity in which solitary and cryptic grasshoppers can transform into gregarious and conspicuous locusts in response to an increase in local population density. We investigated the evolution of this complex phenotypic plasticity in a phylogenetic framework using a morphological phylogeny of Cyrtacanthacridinae, which contains some of the most important locust species, and a comprehensive literature review on the biology and ecology of all known members of the subfamily. A phylogenetic analysis based on 71 morphological characters yielded a well-resolved tree and found that locust phase polyphenism evolved multiple times within the subfamily. The literature review demonstrated that many cyrtacanthacridine species, both locust and sedentary, are capable of expressing density-dependent color plasticity. When this color plasticity was divided into two smaller components, background coloration and development of black pigmentation, and when these plastic traits were optimized on to the phylogeny, we found that the physiological mechanisms underlying this plasticity were plesiomorphic for the subfamily. We also found that different locust species in Cyrtacanthacridinae express both similarities and differences in their locust phase polyphenism. Because locust phase polyphenism is a complex syndrome consisting of numerous plastic traits, we treat it as a composite character and dissected it into smaller components. The similarities among locust species could be attributed to shared ancestry and the differences could be attributed to the certain components of locust phase polyphenism evolving at different rates.
© The Willi Hennig Society 2007.  相似文献   

4.
Abstract Detailed aspects of the transition from the solitarious to the gregarious phase in the framework of locust ecology are undoubtedly most important for understanding locust phase polyphenism. Nevertheless, due to obvious difficulties in studying the solitarious phase in nature, such information is limited and mostly available from research carried out under laboratory conditions. In the current study, we examined the dispersal patterns of newly hatched locust nymphs in a laboratory setup that simulated seminatural conditions. This was carried out with no previous manipulation of the nymphs other than controlling their parental density. We comparatively tested the spatial distribution of newly hatched nymphs on perches located at different ranges within an emergence arena, and the expected Poisson (random) distribution. Hatchlings were found to disperse among the perches in a pattern significantly different from that expected by random. Irrespective of their parents’ phase, the observed distributions of all nymphs were clearly clumped, similar or close to those expected for gregarious locusts. It seems that rather than emerging with a parentally derived and predetermined phase, hatchlings have an independent default or innate behavioral state, which reflects at least tolerance if not attraction to conspecifics. The typical phase behavior may later become dominant under the appropriate environmental conditions. These results imply novel perspectives on locust phase transformation, which contribute to our understanding of the formation of locust crowds under field conditions. These should be considered in any rationale for developing a preventative management strategy of locust populations.  相似文献   

5.
Swarming and the expression of phase polyphenism are defining characteristics of locust species. Increases in local population density mediate morphological, physiological and behavioural changes within individuals, which correlate with mass marching of juveniles in migratory bands and flying swarms of adults. The Australian plague locust (Chortoicetes terminifera) regularly forms migratory bands and swarms, but is claimed not to express phase polyphenism and has accordingly been used to argue against a central role for phase change in locust swarming. We demonstrate that juvenile C. terminifera express extreme density-dependent behavioural phase polyphenism. Isolated-reared juveniles are sedentary and repelled by conspecifics, whereas crowd-reared individuals are highly active and are attracted to conspecifics. In contrast to other major locust species, however, behavioural phase change does not accumulate across generations, but shifts completely within an individual''s lifetime in response to a change in population density.  相似文献   

6.
Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with those on the desert locust and other relevant studies. We attribute the presence of density-dependent phenotypic plasticity in the non-swarming Schistocerca species to phylogenetic conservatism, but there may be a possible role of local adaptation in further shaping the ultimate expressions of plasticity.  相似文献   

7.
Phenotypic plasticity in behavior induced by high rearing density is often part of a migratory syndrome in insects called phase polyphenism. Among locust species, swarming and the expression of phase polyphenism are highly correlated. The american grasshopper, Schistocerca americana, rarely swarms even though it is closely related to the swarming Old World desert locust, S. gregaria, as well as two swarming New World locusts. Anecdotal field observations of locust-like behavior in S. americana indicate that it may express behavioral phase polyphenism, but empirical investigations are lacking. In this study, I tested the hypothesis that S. americana expresses locust-like density-dependent changes in behavior during both the first and final nymphal instars. I then compared the expression of behavioral phase change between S. americana and S. gregaria. First instar S. americana exhibited significant geographic variation in behavior with grasshoppers from a North Carolina population expressing more pronounced density-dependent changes relative to grasshoppers from a Texas population. The behavior of final instar S. americana was only slightly affected by rearing density and there was no evidence for a difference between populations. Comparison with S. gregaria revealed that the magnitude of density-dependent behavioral change, particularly among final instar nymphs, was much reduced in S. americana.  相似文献   

8.
During outbreaks, locust swarms can contain millions of insects travelling thousands of kilometers while devastating vegetation and crops. Such large-scale spatial organization is preceded locally by a dramatic density-dependent phenotypic transition in multiple traits. Behaviourally, low-density 'solitarious' individuals avoid contact with one another; above a critical local density, they undergo a rapid behavioural transition to the 'gregarious phase' whereby they exhibit mutual attraction. Although proximate causes of this phase polyphenism have been widely studied, the ultimate driving factors remain unclear. Using an individual-based evolutionary model, we reveal that cannibalism, a striking feature of locust ecology, could lead to the evolution of density-dependent behavioural phase-change in juvenile locusts. We show that this behavioural strategy minimizes risk associated with cannibalistic interactions and may account for the empirically observed persistence of locust groups during outbreaks. Our results provide a parsimonious explanation for the evolution of behavioural plasticity in locusts.  相似文献   

9.
Density-dependent phase polyphenism is a defining characteristic of the paraphyletic group of acridid grasshoppers known as locusts. The cues and mechanisms associated with crowding that induce behavioural gregarization are best understood in the desert locust, Schistocerca gregaria, and involve a combination of sensory inputs from the head (visual and olfactory) and mechanostimulation of the hind legs, acting via a transient increase in serotonin in the thoracic ganglia. Since behavioural gregarization has apparently arisen independently multiple times within the Acrididae, the important question arises as to whether the same mechanisms have been recruited each time. Here we explored the roles of visual, olfactory and tactile stimulation in the induction of behavioural gregarization in the Australian plague locust, Chortoicetes terminifera. We show that the primary gregarizing input is tactile stimulation of the antennae, with no evidence for an effect of visual and olfactory stimulation or tactile stimulation of the hind legs. Our results show that convergent behavioural responses to crowding have evolved employing different sites of sensory input in the Australian plague locust and the desert locust.  相似文献   

10.
Desert locusts ( Schistocerca gregaria ) change phase in response to population density: 'solitarious' insects avoid one another, but when crowded they shift to the gregarious phase and aggregate. This individual-level process is the basis for population-level responses that may ultimately include swarm formation. We have recently developed an individual-based model of locust behavior in which contagious resource distribution leads to phase change. This model shows how population gregarization can result from simple processes operating at the individual level. In the present study, we performed a series of laboratory experiments in which vegetation pattern and locust phase state were assigned quantitative, measurable indices. The pattern of distribution of the resource was represented via fractal dimension; the phase state was evaluated using a behavioral assay based on logistic regression analysis. Locusts were exposed to different patterns of food resource in an artificial arena, after which their behavioral phase state was assayed. These experiments showed that when the distribution of the vegetation was patchy, locusts were more active, experienced higher levels of crowding, and became more gregarious. These results are consistent with simulation predictions and field observations, and demonstrate that small-scale vegetation distribution influences individual behavior and phase state and plays a role in population-level responses.  相似文献   

11.
12.
The density-dependent phase polyphenism in locusts offers an excellent model to investigate the epigenetic regulatory mechanisms underlying phenotypic plasticity. In this study, we identified histone-modifying enzymes mediating histone post-translational modifications, which serve as a major regulatory mechanism of epigenetic processes, on the basis of the whole genome sequence of the migratory locust, Locusta migratoria. We confirmed the existence of various functional histone modifications in the locusts. Compared with other sequenced insect genomes, the locust genome contains a richer repertoire of histone-modifying enzymes. Several locust histone-modifying enzymes display vertebrate-like characteristics, such as the presence of a Sirt3-like gene and multiple alternative splicing of GCN5 gene. Most histone-modifying enzymes are highly expressed in the eggs or in the testis tissues of male adults. Several histone deacetylases and H3K4-specific methyltransferases exhibit differential expression patterns in brain tissues between solitarious and gregarious locusts. These results reveal the main characteristics of histone-modifying enzymes and provide important cues for understanding the epigenetic mechanisms underlying phase polyphenism in locusts.  相似文献   

13.
Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food‐related behaviors and a specific gene family called foraging (for), which encodes a cGMP‐dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long‐term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well‐established phase‐related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Cover Caption     
《Insect Science》2012,19(6):i-i
The question of the very early stages of grangerization is one of the keys to our understanding of the amazing behavioral plasticity that lies in the basis of locust phase polyphenism. The study by Guershon and Ayali presents a novel perspective on this question, suggesting that rather than emerging with a gregarious or solitarious, parentally derived and predetermined phase, all locust hatchlings have an independent default or innate behavioral state, which reflects tolerance if not attraction to conspecifics. The phase is very much determined later on by environmental conditions. (photo provided by Amir Ayali, see pages 649‐656).  相似文献   

15.
Desert locusts demonstrate pronounced density-dependent polyphenism: a complex suite of traits shifts over the lifetime of an individual in response to crowding or isolation. These changes also accumulate across generations through a maternal effect. Female desert locusts alter the developmental trajectory of their offspring in response to their own experience of crowding. The mother possesses a memory of both the recency and extent of crowding and shifts the phase state of her hatchlings accordingly. Extensive experimental work has shown that offspring behaviour is controlled by a low molecular weight, polar compound (or compounds) released from the mother's accessory glands. The chemical identity of this agent is not yet known.  相似文献   

16.
Desert locusts [Schistocerca gregaria Forskål (Orthoptera, Acrididae)] change phase in response to population density: solitarious insects avoid one another, but when crowded they change to the gregarious phase and aggregate. The attraction/repulsion responses of gregarious and solitarious locusts maintain phase differences in locust populations. Despite considerable research, the cues for aggregation are poorly understood; moreover, the repulsion response of solitarious locusts has not previously been investigated. This study analyzes the role of visual and olfactory stimuli in triggering these different responses to conspecifics. Isolation-reared insects were repelled by both olfactory and visual stimuli from other locusts. Crowd-reared insects were attracted by the combination of olfactory and visual cues. In addition, olfactory stimuli affected other behaviors in both phases, and behavioral differences between isolation- and crowd-reared locusts were clear even in the absence of conspecifics. The sensory and neurological mechanisms underlying these responses are not well understood and will form the basis for neurobiological investigations of locust phase.  相似文献   

17.
The mechanism underlying the phase-dependent polyphenism in hatchling body coloration was studied by testing for a possible causal relationship with egg size in the desert locust, Schistocerca gregaria. Crowd-reared (gregarious) females typically produce large, black offspring, whereas females reared in isolation (solitarious) deposit small, green offspring. We first tested for possible genetic differences in the role of egg foam by washing or separating eggs from two strains of locust. No solitarizing effect was found in either of the strains tested, supporting a previous finding, using another laboratory strain, to show that the hatchling body coloration and size are pre-determined in the ovary of the mother and no egg foam factor is involved in the control of the hatchling body coloration. Topical application of fenoxycarb, a juvenile hormone analog (JHA), and implantation of extra corpora allata (CA), taken from Locusta migratoria, caused gregarious female adults of S. gregaria to produce small eggs. Some eggs laid by CA-implanted females produced green hatchlings. All large eggs chosen among those deposited by gregarious females produced black hatchlings. When eggs were either kept on dry filter paper at nearly saturated relative humidity during embryogenesis or pricked with a needle so that some egg yolk was squeezed out, some produced small, green hatchlings. These results suggested that the amount of egg yolk or the availability of yolk material may determine the body coloration of hatchlings.  相似文献   

18.
19.
Desert locusts (Schistocerca gregaria Forskål (Orthoptera: Acrididae)) change phase in response to population density. Solitarious insects avoid one another; when crowded, they shift to the gregarious phase and aggregate. Laboratory experiments and individual‐based modelling have shown that small‐scale resource distribution can affect locust phase state via an influence on crowding. Laboratory work has also shown that parental phase state is transmitted to offspring via maternal inheritance. These effects had not been investigated in the field previously. We maintained small populations of adult desert locusts in semi‐field enclosures with different distribution patterns of a single plant species (Hyoscyamus muticus L. (Solanaceae)). The offspring of locusts exposed to more clumped patterns of vegetation exhibited more gregarious behaviour when tested in a behavioural phase assay than did progeny from parents left in enclosures with more scattered vegetation. These effects on nymphal behaviour appeared to be mediated by influences of resource distribution on adult phase state. Phase state in small semi‐field populations was influenced by small‐scale vegetation distribution. Phase differences engendered by environmental structure were maintained in time and transmitted to progeny.  相似文献   

20.
Natural enemy attack can cause transgenerational shifts in phenotype such that offspring are less vulnerable to future attack. Desert locusts (Schistocerca gregaria) show density‐dependent variation in their resistance to pathogens, such that they are less vulnerable to pathogens when in the high‐density gregarious phase state (when they would probably be more exposed to pathogens) than when in the solitarious phase state. We therefore hypothesized that infected gregarious parents would maintain this phenotype in their offspring. We infected gregarious desert locust nymphs with the fungal pathogen Metarhizium anisopliae var. acridum, and allowed them to survive to reproduction by means of behavioural fever. The phase state of the locust offspring was assessed by their colouration and behavioural assays. Contrary to our hypothesis, we found an increase in solitarization in the infected population (14.6% solitarious offspring from infected parents, vs. <2% from uninfected counterparts at equivalent density). In a second experiment, we simulated behavioural fever temperatures and obtained a similar result (13.6% solitarious offspring vs. 4.4% from controls), implying that the phenomenon is probably a side‐effect of the hosts’ fever response. Identification of this novel environmental factor affecting locust phase state could have important implications for the biological control of these major pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号