首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Caterpillars are faced with nutritional challenges when feeding on plants. In addition to harmful secondary metabolites and protein- and water-limitations, tissues may be carbohydrate-rich which may attenuate optimal caterpillar performance. Therefore, caterpillars have multiple strategies to cope with surplus carbohydrates. In this study, we raise the possibility of a pre-ingestive mechanism to metabolically deal with excess dietary sugars. Many Noctuid caterpillars secrete the labial salivary enzyme glucose oxidase (GOX), which oxidizes glucose to hydrogen peroxide and gluconate, a nutritionally unavailable carbohydrate to the insect. Beet armyworm, Spodoptera exigua, larvae were restricted to diets varying in protein to digestible carbohydrate (P:C) ratio (42p:21c; 33p:30c; 21p:42c) and total nutrient concentration (42% and 63%). High mortality and longer developmental time were observed when caterpillars were reared on the C-biased, P-poor diet (21p:42c). As the carbohydrate content of the diet increased, caterpillars egested excess glucose and a diet-dependent difference in assimilated carbohydrates and pupal biomass was not observed, even though caterpillars restricted to the C-biased diet (21p:42c) accumulated greater pupal lipid reserves. Larval labial salivary GOX activity was also diet-dependent and gluconate, the product of GOX activity, was detected in the frass. Unexpectedly, GOX activity was strongly and positively correlated with dietary protein content.  相似文献   

2.
We investigated the change of the glucose oxidase (GOX) activity in labial salivary glands of Helicoverpa armigera larvae fed with the artificial diet or host plant tobacco and the major factors responsible for such a change. Throughout larval development, the labial salivary GOX activities in caterpillars reared on the artificial diet were remarkably higher than those fed with the plant. After fifth-instar plant-fed caterpillars were transferred to the artificial diet, their labial salivary GOX activity increased quickly, which was closely correlated with the time spent feeding on the artificial diet. The total sugar content of the artificial diet was 68 times higher than that of the tobacco leaves. We hypothesized that sugars and secondary metabolites are the possible causes of induction of GOX activity. When fifth-instar caterpillars were fed with tobacco leaves coated with glucose or sucrose, their labial salivary GOX activity was significantly higher than those fed with leaves without sugar coating. Following native PAGE, 1 single band of the labial salivary GOX was observed in all the caterpillars fed with different diets, implying that only the activity of the isoenzyme was changed in response to different diets. Furthermore, the labial salivary GOX activity was determined after caterpillars were fed with artificial diets containing chlorogenic acid, rutin, and quercetin. The results showed that all these phenolic compounds had no effect on the GOX activity. We conclude that sugar in diets was a major factor influencing the labial salivary GOX activity of the larvae. Arch. Insect Biochem. Physiol. 2008.  相似文献   

3.
4.
Salivary enzyme, glucose oxidase (GOX) from the caterpillar Helicoverpa zea, catalyzes the conversion of glucose to gluconic acid and hydrogen peroxide. Because hydrogen peroxide has well-known antimicrobial properties, we examined whether caterpillar labial saliva could reduce the infectivity of bacterial pathogens. We examined the effects of caterpillar saliva on the growth of two bacteria species Serratia marcescens and Pseudomonas aeruginosa. Wells formed in LB agar contained a solution of salivary gland extract (Sx) and glucose, GOX and glucose, Sx only, GOX only, or glucose only. After 18 h of incubation, the diameter of cleared bacteria was measured. Wells treated with only GOX, Sx, or glucose showed no measurable area of clearing, while wells treated with GOX with glucose or Sx with glucose had considerable clearing. To determine if saliva could provide protection to caterpillars in vivo, a surgery was performed on caterpillars that prevented the secretion of labial saliva. Caterpillars were fed a diet containing either no added bacteria or treated with high levels of S. marcescens or P. aeruginosa. Caterpillars that could not secrete saliva had significantly higher levels of mortality when feeding on diet treated with either bacterium than caterpillars that could secrete saliva when feeding on equal levels of bacteria-treated diet. Our evidence demonstrates for the first time that insect saliva in situ can provide protection against bacterial pathogens and that the salivary enzyme GOX appears to provide the antimicrobial properties.  相似文献   

5.
Previously starved urchins, Lytechinus variegatus, (36.0 ± 0.8 (SE) mm test diameter) were held in replicated (3) 10-L aquaria with artificial seawater at 22 ± 2  °C and 32‰ salinity and fed three diet treatments. Urchins were fed diets containing 9 : 35, 20 : 23 or 31 : 12% dry protein: % dry carbohydrate (P : C) ad libitum for a 65-day period. Gonads from urchins fed the 9 : 35 P : C diet had similar organic, lower ash, and lower water content than urchins fed the 31 : 12 P : C protein diet. Water content varied with both diet and nutritional history; consequently, water content may have limited value as a predictor of gonad nutritional status. Protein and carbohydrate concentrations in the gonad were directly related to the dietary composition of these nutrients; gonad lipids did not vary with diet. Excess carbohydrates are frequently stored as fats in fish and mammals but this does not appear to be the case in L. variegatus. Test carbohydrate storage and gut protein storage also reflected dietary composition. Image analysis of ovaries indicated decreased nutritive phagocyte volume, increased germinal epithelium volume and larger oocyte diameters in urchins fed high protein, low carbohydrate diets. Analysis of testes also indicated decreased nutritive phagocyte volume and increased gamete volume with urchins fed high protein, low carbohydrate diets, but differences among treatments were less obvious than in ovaries. This study suggests that high protein, low carbohydrate diets promote gamete growth and development. In addition, the biochemical and gametic composition of gonads can be altered by manipulating dietary composition. This could affect the quality and value of sea urchin roe for human consumption.  相似文献   

6.
Rainbow trout is unable to utilize high levels of dietary carbohydrates and experiences hyperglycemia after consumption of carbohydrate-rich meals. Carbohydrates stimulate hepatic glycolytic activity, but gene expression of the rate-limiting gluconeogenic enzymes glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) remains high. Although there is significant mRNA expression and activity of gluconeogenic enzymes in trout intestine and kidney, the regulation of these enzymes by diet is not known. We tested the hypothesis that dietary carbohydrate modulates intestinal and renal G6Pase, FBPase and PEPCK. Fish were either fasted or fed isocaloric carbohydrate-free (CF) or high carbohydrate (HC) diets for 14 days. As expected, fish fed HC exhibited postprandial hyperglycemia and enhanced levels of hepatic glucokinase mRNA and activity. Dietary carbohydrates had no significant effect on the expression and activity of PEPCK, FBPase and G6Pase in all three organs. In contrast, fasting enhanced the activity, but not the mRNA expression of both hepatic and intestinal PEPCK, as well as intestinal FBPase. Therefore, the activity of rate-limiting gluconeogenic enzymes in trout can be modified by fasting, but not by the carbohydrate content of the diet, potentially causing hyperglycemia when fed high levels of dietary carbohydrates. In this species consuming low carbohydrate diets at infrequent intervals in the wild, fasting-induced increases in hepatic and intestinal gluconeogenic enzyme activities may be a key adaptation to prevent perturbations in blood glucose during food deprivation. Presented in part at Experimental Biology, April 2006, San Francisco, CA [Kirchner S., Panserat S., Kaushik S. and Ferraris R. FASEB-IUPS-2006 A667.6].  相似文献   

7.
Crustaceans exhibit a remarkable variation in their feeding habits and food type, but most knowledge on carbohydrate digestion and utilization in this group has come from research on few species. The aim of this study was to make an integrative analysis of dietary carbohydrate utilization in the spiny lobster Panulirus argus. We used complementary methodologies such as different assessments of digestibility, activity measurements of digestive and metabolic enzymes, and post-feeding flux of nutrients and metabolites. Several carbohydrates were well digested by the lobster, but maize starch was less digestible than all other starches studied, and its inclusion in diet affected protein digestibility. Most intense hydrolysis of carbohydrates in the gastric chamber of lobster occurred between 2–6 h after ingestion and afterwards free glucose increased in hemolymph. The inclusion of wheat in diet produced a slow clearance of glucose from the gastric fluid and a gradual increase in hemolymph glucose. More intense hydrolysis of protein in the gastric chamber occurred 6–12 h after ingestion and then amino acids tended to increase in hemolymph. Triglyceride concentration in hemolymph rose earlier in wheat-fed lobsters than in lobsters fed other carbohydrates, but it decreased the most 24 h later. Analyses of metabolite levels and activities of different metabolic enzymes revealed that intermolt lobsters had a low capacity to store and use glycogen, although it was slightly higher in wheat-fed lobsters. Lobsters fed maize and rice diets increased amino acid catabolism, while wheat-fed lobsters exhibited higher utilization of fatty acids. Multivariate analysis confirmed that the type of carbohydrate ingested had a profound effect on overall metabolism. Although we found no evidence of a protein-sparing effect of dietary carbohydrate, differences in the kinetics of their digestion and absorption impacted lobster metabolism determining the fate of other nutrients.  相似文献   

8.
Seven groups of fingerling rainbow trout (Salmo gairdneri) were fed for 10 weeks on 0%, 10%, 20% and 30% of cassava or rice in isonitrogenous diets.Optimum growth and food utilisation was at 20% dietary cassava. High fibre content of the control diet did not suppress protein digestibility in this group. Rather, at all levels, protein digestibility was good and remained between 84.4% and 87.5%. However, in the control group, carbohydrate digestibility was very poor. The cassava diet which had the highest digestible energy as carbohydrate produced the best growth performance, food utilization and protein sparing. At the levels studied, the dietary carbohydrates produced no hyperglycaemic effect on the fish. There was no evidence of drastic adverse effects on the tissue and liver composition of the fish receiving these carbohydrates.  相似文献   

9.
We determined the effect of dietary starch on growth performance and feed utilization in European sea bass juveniles. Data on the dietary regulation of key hepatic enzymes of the glycolytic, gluconeogenic, lipogenic and amino acid metabolic pathways (hexokinase, HK; glucokinase, GK; pyruvate kinase, PK; fructose-1,6-bisphosphatase, FBPase; glucose-6-phosphatase, G6Pase; glucose-6-phosphate dehydrogenase, G6PD; alanine aminotransferase, ALAT; aspartate aminotransferase, ASAT and glutamate dehydrogenase, GDH) were also measured. Five isonitrogenous (48% crude protein) and isolipidic (14% crude lipids) diets were formulated to contain 10% normal starch (diet NS10), 10% waxy starch (diet WS10), 20% normal starch (diet NS20), 20% waxy starch (diet WS20) or no starch (control diet). Another diet was formulated with no carbohydrate, and contained 68% crude protein and 14% crude lipids (diet HP). Each experimental diet was fed to triplicate groups of 30 fish (initial weight: 23.3 g) on an equivalent feeding scheme for 12 weeks. The best growth performance and feed efficiency were achieved with fish fed the HP diet. Neither the level nor the nature of starch had measurable effects on growth performance of sea bass juveniles. Digestibility of starch was higher with waxy starch and decreased with increasing levels of starch in the diet. Whole-body composition and plasma metabolites, mainly glycemia, were not affected by the level and nature of the dietary starch. Data on enzyme activities suggest that dietary carbohydrates significantly improve protein utilization associated with increased glycolytic enzyme activities (GK and PK), as well as decreased gluconeogenic (FBPase) and amino acid catabolic (GDH) enzyme activities. The nature of dietary carbohydrates tested had little influence on performance criteria.  相似文献   

10.
《Reproductive biology》2020,20(3):441-446
In the present report, we determined the impact of dietary selenium (Se) deficiency and supplementation on the expression of two ER-resident selenoproteins i.e., Selenok and Selenom in the ovaries of aging mice. The mRNA expression of Selenok and Selenom (RT-qPCR) was significantly higher in the ovaries of mice fed diets supplemented with inorganic (ISe-S: 0.33 mg Se/kg) and organic (OSe-S: 0.33 mg Se/kg) Se compared to those fed a Se-deficient (Se-D: 0.08 mg Se/kg) diet and both Se-adequate (ISe-A: 0.15 mg Se/kg and OSe-A: 0.15 mg Se/kg) diets. Similarly, the protein signals of SELENOK (immunofluorescence assay) were also significantly higher in the Se-supplemented groups compared to those fed Se-D and Se-adequate (ISe-A and OSe-A) diets. Meanwhile, the rate of in vitro-produced blastocysts developing from MII oocytes was also evaluated and it was revealed that this rate was significantly higher in the Se-supplemented mice compared to those fed a Se-D diet. Altogether, the dietary Se supplementation increased the expression of Selenok (also its protein expression) and Selenom in the ovaries of aging mice, potentially contributing to an improved developmental potential of in vitro-matured M II oocytes.  相似文献   

11.
12.
The maintenance of the immune system can be costly, and a lack of dietary protein can increase the susceptibility of organisms to disease. However, few studies have investigated the relationship between protein nutrition and immunity in insects. Here, we tested in honeybees (Apis mellifera) whether dietary protein quantity (monofloral pollen) and diet diversity (polyfloral pollen) can shape baseline immunocompetence (IC) by measuring parameters of individual immunity (haemocyte concentration, fat body content and phenoloxidase activity) and glucose oxidase (GOX) activity, which enables bees to sterilize colony and brood food, as a parameter of social immunity. Protein feeding modified both individual and social IC but increases in dietary protein quantity did not enhance IC. However, diet diversity increased IC levels. In particular, polyfloral diets induced higher GOX activity compared with monofloral diets, including protein-richer diets. These results suggest a link between protein nutrition and immunity in honeybees and underscore the critical role of resource availability on pollinator health.  相似文献   

13.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

14.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

15.
Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.  相似文献   

16.
The effects of different protein, lipid and carbohydrate diets on growth and energy storage in tench, Tinca tinca L., were studied. Over a 2-month period fish were fed four different diets: control, protein-enriched, carbohydrate-enriched and lipid-enriched. The best growth rates were obtained with the control and protein-enriched diets; the carbohydrate diet produced the worst results (lowest specific growth rate, weight gain, nutritional index and hepatosomatic index). These results suggest that it is not advisable to reduce dietary fish protein below 35%, and that it is not possible to obtain a protein-sparing effect of either lipids or carbohydrates, at least in our experimental conditions. The high-protein diet resulted in the storage of energy excess as muscle proteins and hepatic glycogen. Tench fed the high-carbohydrate diet stored carbohydrates as muscle glycogen and reduced plasma triglycerides. Finally, both liver and muscle lipid content were in positive correlation to dietary lipid.  相似文献   

17.
Plants can recognize the insect elicitors and activate its defense mechanisms. European Corn Borer (ECB; Ostrinia nubilalis) saliva, produced from the labial salivary glands and released through the spinneret, is responsible for inducing direct defenses in host plants. Glucose oxidase (GOX) present in the ECB saliva induced direct defenses in tomato. By contrast, GOX activity in ECB saliva was insufficient to trigger defenses in maize, suggesting that host-specific salivary elicitors are responsible for inducing direct defenses in host plants. Our current study further examined whether ECB saliva can trigger indirect defenses in tomato. Relative expression levels of TERPENE SYNTHASE5 (TPS5) and HYDROPEROXIDE LYASE (HPL), marker for indirect defenses in host plants, were monitored. Quantitative real-time PCR analysis revealed that ECB saliva can induce the expression of TPS5 and HPL, suggesting that salivary signals can induce indirect defenses in addition to the direct defenses. Further experiments are required to identify different ECB elicitors that are responsible for inducing direct and indirect defenses in host plants.  相似文献   

18.
Abstract.  Beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), caterpillars are destructive crop pests responsible for considerable annual economic losses. These generalist herbivores are challenged with a diversity of dietary choices that can impact their survival, development and fecundity. In the present study, dietary choices of S. exigua caterpillars, based on the protein to digestible carbohydrate (P : C) ratio of the food, and the impact of nutritionally unbalanced foods on caterpillar performance are assessed. In choice experiments, individual third-instar caterpillars are offered simultaneously a P-biased and a C-biased food until pupation. Caterpillars feed nonrandomly and select a slightly P-biased diet (22P : 20C). In no-choice experiments, second instar caterpillars are reared until pupation on diets ranging in P : C ratio from extremely P- to extremely C-biased. High mortality and delayed development are observed on the C-rich, P-poor diets, highlighting the potential deleterious effects of excess carbohydrates and the importance of protein for growth and development. Diet-dependent differences in pupal weight or pupal lipid reserves are not observed. This contrasts with closely-related Spodoptera species where pupal mass and lipid stores increase on C-rich, P-poor diets. On the extremely P-biased diet, performance is similar to that of individuals reared on the self-selected diet, suggesting that these caterpillars may efficiently be deaminating excess amino acids to generate carbon skeletons, which are shunted into lipid biosynthesis. Spodoptera exigua caterpillars exhibit flexible and efficient pre-ingestive nutrient intake regulation and post-ingestive utilization, allowing these generalist feeders to cope with the heterogeneous diets they may encounter.  相似文献   

19.
We examined dietary self‐selection and rules of compromise for protein (P) and digestible carbohydrate (C) intake by fifth‐instar Vanessa cardui L. (Lepidoptera: Nymphalidae: Nymphalini). We presented six fat‐free diet pairs to larvae in a choice trial to determine the ‘intake target’. In addition, we fed larvae seven fat‐free single diets differing in dietary nutrient ratio in no‐choice trials to determine the rules of compromise they exhibit when constrained to a singular, sub‐optimal dietary source. In choice trials, caterpillars regulated nutrient intake to a ratio of 1 protein to 1.09 carbohydrate (1P:1.09C), exhibiting tighter regulation of protein than of carbohydrate. Furthermore, larvae from different diet pair treatments did not differ in pupal mass or stadium duration. In no‐choice experiments, larvae reduced consumption on increasingly protein‐biased diets and increased consumption on increasingly carbohydrate‐biased diets, relative to a 1P:1C ratio diet. Differences in carbohydrate consumption were much greater between no‐choice treatments than differences in protein consumption. Dietary nutrient ratio affected pupal mass when accounting for initial larval mass. Pupal mass decreased as nutrient ratio was shifted off of 1P:1C, but to a greater extent when the ratio was skewed toward carbohydrate. Stadium duration increased as nutrient ratio diverged from 1P:1C, being more pronounced when shifted toward carbohydrate than toward protein. Regulation to near 1P:1C is consistent with results found for other Lepidoptera, and the rule of compromise exhibited by V. cardui is consistent with that expected for a generalist herbivore.  相似文献   

20.
A 63-day feeding trial was carried out to investigate the effect of three levels of Cr yeast (0.5, 1.0 and 2.0?mg Cr/kg) on the utilization of diets containing 38.5?% of maize starch or dextrin in common carp, Cyprinus carpio L. (initial mean body mass 14?±?0.3?g) in an auto circulator system at 25?±?0.5?°C. A two-way analysis of variance (ANOVA) showed that the final body mass (FBM), percentage mass gain (%MG), specific growth rate (SGR) and feed conversion ratio (FCR) were significantly (P?<?0.05) affected by the two sources of variation (carbohydrate source and Cr level). In general, fish fed on a diet containing starch and fortified with 0.5?mg Cr/kg performed significantly higher FBM (47.23?g), %MG (225.11), SGR (1.91) and lower value of FCR (1.24) compared to fish fed on the other diets. Carp fed on 2.0?mg Cr/kg with maize starch and 1.0?mg Cr/kg with dextrin-based diet showed a significant reduction (P?<?0.05) in whole body lipid content as confirmed by a two-way ANOVA. Fish fed on a maize starch-based diet supplemented with 0.5 and 1.0?mg Cr/kg recorded the highest activities for hexokinase enzyme. Glucose-6-phosphate dehydrogenase activity was neither affected by Cr concentration nor by dietary carbohydrate source. Fish fed on dextrin-based diets accumulated higher Cr in the whole tissue compared to fish fed on starch-based diets. Normal histological structures in the liver and gut tissues were observed in all groups. The present data clearly showed that dietary Cr yeast was safe in the fish diet at the levels tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号