共查询到20条相似文献,搜索用时 11 毫秒
1.
Ascoviruses are double-stranded DNA viruses which cause fatal disease in lepidopteran host larvae. They induce a unique pathology, causing cleavage of host cells into virion-containing vesicles. With the single exception of Diadromus pulchellus ascovirus, all ascoviruses have been exclusively reported from the Noctuidae. To investigate whether Heliothis virescens AV (HvAV-3e) has a broader host range at the family level, larvae of Crocidolomia pavonana F. (Lepidoptera: Crambidae), a major pest of brassica crops in tropical and sub-tropical regions of the Old World and Australasia, were inoculated with HvAV-3e. Larvae were readily infected by the ascovirus and feeding, growth and survival were significantly affected. However, the milky white discolouration of the haemolymph which is characteristic of ascovirus infection in noctuid hosts was not apparent. In further contrast to infected noctuid host larvae that do not develop to the pupal stage, a significant proportion of infected C. pavonana larvae pupated but all were killed at this stage. Thus, C. pavonana appears to be a semi-permissive host of the ascovirus, the presence of such hosts in the field might be an explanation for the conundrum for the ascovirus-noctuid-wasp relationship, helping explain the persistence of the ascovirus. 相似文献
2.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones. 相似文献
3.
Sungwoo Bae 《Journal of invertebrate pathology》2009,102(1):79-283
An endoparasitoid wasp, Cotesia plutellae, parasitizes larvae of the diamondback moth, Plutella xylostella, with its symbiotic polydnavirus, C. plutellae bracovirus (CpBV). This study analyzed the role of Inhibitor-kB (IkB)-like genes encoded in CpBV in suppressing host antiviral response. Identified eight CpBV-IkBs are scattered on different viral genome segments and showed high homologies with other bracoviral IkBs in their amino acid sequences. Compared to an insect ortholog (e.g., Cactus of Drosophila melanogaster), they possessed a shorter ankyrin repeat domain without any regulatory domains. The eight CpBV-IkBs are, however, different in their promoter components and expression patterns in the parasitized host. To test their inhibitory activity on host antiviral response, a midgut response of P. xylostella against baculovirus infection was used as a model reaction. When the larvae were orally fed the virus, they exhibited melanotic responses of midgut epithelium, which increased with baculovirus dose and incubation time. Parasitized larvae exhibited a significant reduction in the midgut melanotic response, compared to nonparasitized larvae. Micro-injection of each of the four CpBV genome segments containing CpBV-IkBs into the hemocoel of nonparasitized larvae showed the gene expressions of the encoded IkBs and suppressed the midgut melanotic response in response to the baculovirus treatment. When nonparasitized larvae were orally administered with a recombinant baculovirus containing CpBV-IkB, they showed a significant reduction in midgut melanotic response and an enhanced susceptibility to the baculovirus infectivity. 相似文献
4.
The midgut proteases of the Bacillus thuringiensis resistant and susceptible populations of the diamondback moth, Plutella xylostella L. were characterized by using protease specific substrates and inhibitors. The midgut contained trypsin-like proteases of molecular weights of 97, 32, 29.5, 27.5, and 25 kDa. Of these five proteases, 29.5 kDa trypsin-like protease was the most predominant in activation of protoxins of Cry1Aa and Cry1Ab. The activation of Cry1Ab protoxin by midgut protease was fast (T(1/2) of 23-24 min) even at a protoxin:protease ratio of 250:1. The protoxin activation appeared to be multi-step process, and at least seven intermediates were observed before formation of a stable toxin of about 57.4 kDa from protoxin of about 133 kDa. Activation of Cry1Aa was faster than that of Cry1Ab on incubation of protoxins with midgut proteases and bovine trypsin. The protoxin and toxin forms of Cry proteins did not differ in toxicity towards larvae of P. xylostella. The differences in susceptibility of two populations to B. thuringiensis Cry1Ab were not due to midgut proteolytic activity. Further, the proteolytic patterns of Cry1A protoxins were similar in the resistant as well as susceptible populations of P. xylostella. 相似文献
5.
Youjing Gong 《Journal of invertebrate pathology》2010,104(2):90-96
A field population (SZ) of Plutella xylostella, collected from the cabbage field in Shenzhen, Guangdong Province of China in 2002, showed 2.3-fold resistance to Cry1Aa, 110-fold to Cry1Ab, 30-fold to Cry1Ac, 2.1-fold to Cry1F, 5.3-fold to Cry2Aa and 6-fold resistance to Bacillus thuringiensis var. kurstaki (Btk) compared with a susceptible strain (ROTH). The SZBT strain was derived from the SZ population through 20 generations of selection with activated Cry1Ac in the laboratory. While the SZBT strain developed 1200-fold resistance to Cry1Ac after selection, resistance to Cry1Aa, Cry1Ab, Cry1F, and Btk increased to 31-, 1900-,>33- and 17-fold compared with the ROTH strain. However, little or no cross-resistance was detected to Cry1B, Cry1C and Cry2Aa in the SZBT strain. Genetic cross analyses between the SZBT and ROTH strains revealed that Cry1Ac-resistance in the SZBT strain was controlled by a single, autosomal, incompletely recessive gene. Binding studies with 125I-labeled Cry1Ac showed that the brush border membrane vesicles (BBMVs) of midguts from the resistant SZBT insects had lost binding to Cry1Ac. Allelic complementation tests demonstrated that the major Bt resistance locus in the SZBT strain was same as that in the Cry1Ac-R strain which has “mode 1” resistance to Bt. An F1 screen of 120 single-pair families between the SZBT strain and three field populations collected in 2008 was carried out. Based on this approach, the estimated frequencies of Cry1Ac-resistance alleles were 0.156 in the Yuxi population from Yunnan province, and 0.375 and 0.472 respectively in the Guangzhou and Huizhou populations from Guangdong province. 相似文献
6.
【目的】小菜蛾是危害十字花科蔬菜的世界性重要害虫。通过分析抗生素对小菜蛾的毒性效应,了解肠道细菌对小菜蛾适合度的影响,有助于更好地阐明小菜蛾肠道细菌的功能。【方法】利用抗生素处理含有高丰度肠道细菌的萝卜苗饲养品系(FZss)小菜蛾幼虫,同时利用抗生素处理饲料饲养的无肠道细菌(SLss)小菜蛾幼虫,分析抗生素及肠道细菌对小菜蛾适合度的影响。【结果】抗生素处理FZss品系小菜蛾导致了小菜蛾发育历期延长,虫重、蛹重、化蛹率、产卵量和成虫寿命降低。利用抗生素处理无肠道菌的SLss品系小菜蛾幼虫,小菜蛾化蛹率和单雌产卵量均显著降低,而对发育历期、虫重和蛹重则无影响。【结论】综合两个研究的结果发现抗生素处理后宿主适合度的降低一方面是由于抗生素的毒性效应导致,另一方面是由于小菜蛾肠道细菌的缺失引起。抗生素的毒性效应主要表现为对化蛹率和单雌产卵量的影响,而肠道细菌则对小菜蛾的发育历期、虫重、蛹重以及成虫寿命具有重要的促进作用。 相似文献
7.
8.
Bokri Park 《Journal of invertebrate pathology》2010,105(2):156-163
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses segmented genome located on chromosome(s) of an endoparasitoid wasp, C. plutellae. An episomal viral segment (CpBV-S3) consists of 11,017 bp and encodes two putative open reading frames (ORFs). ORF301 shows amino acid sequence homologies (28-50%) with RNase T2s of various organisms. It also contains BEN domain in C-terminal region. ORF302 is a hypothetical gene, which is also found in other bracoviruses. Both genes were expressed in larvae of Plutella xylostella parasitized by C. plutellae. Their expressions were detected in all tested tissues including hemocyte, fat body, gut, and epidermis. To analyze effects of these genes on the parasitism, the segment of CpBV-S3 was injected to nonparasitized larvae of P. xylostella, in which the two genes were expressed at least for 4 days post-injection. The larvae injected with CpBV-S3 exhibited significant immunosuppression, such as reduction in total hemocyte population and impairment in nodule formation behavior of hemocytes in response to bacterial challenge. Each gene expression in the treated larvae was inhibited by co-injecting respective double strand RNA (dsRNA) specific to each ORF. Injection of dsRNA of ORF301 could rescue the immunosuppression of the viral segment-treated larvae, while dsRNA specific to ORF302 did not. These results suggest that a putative RNase fused with a BEN domain encoded in CpBV-S3 plays a parasitic role in inducing host immunosuppression in the parasitism. 相似文献
9.
10.
11.
Apolipophorin III (ApoLpIII) has been known to play critical roles in lipid transport and immune activation in insects. This study reports a partial ApoLpIII gene cloned from the diamondback moth, Plutella xylostella. It showed that the gene was expressed in all developmental stages of P. xylostella. In larval stage, it was expressed in all tested tissues of hemocyte, fat body, gut, and epidermis. In response to bacterial challenge, the larvae showed an enhanced level of ApoLpIII expression by a quantitative real-time RT-PCR. RNA interference of ApoLpIII by its specific double stranded RNA (dsRNA) caused significant knockdown of its expression level and resulted in significant suppression in hemocyte nodule formation in response to bacterial challenge. However, larvae treated with the dsRNA exhibited a significant recovery in the cellular immune response by addition of a recombinant ApoLpIII. Parasitization by an endoparasitoid wasp, Cotesia plutellae, suppressed expression of ApoLpIII and resulted in a significant suppression in the hemocyte nodule formation. The addition of the recombinant ApoLpIII to the parasitized larvae significantly restored the hemocyte activity. Infection of an entomopathogenic bacterium, Xenorhabdus nematophila, caused potent pathogenicity of P. xylostella. However, the addition of the recombinant ApoLpIII to the infected larvae significantly prevented the lethal pathogenicity. This study suggests that ApoLpIII limits pathogenicity induced by parasitization or bacterial infection in P. xylostella. 相似文献
12.
A laboratory experiment was conducted to study the efficacy of nuclear polyhedrosis virus (NPV) with nine concentrations against all stadia of Plutella xylostella (L). The susceptibility of the larvae was correlated negatively with the period of development of the larvae and positively with the virus concentrations. The highest mortality of 84% was recorded in first stadium larvae compared to lowest mortality of 38% in fourth stadium larvae. The LC50 was 5.5×101 and 4.0×104 polyhedral inclusion bodies (PIB)/ml for first and fourth stadium larvae, respectively. 相似文献
13.
Cotesia plutellae, a solitary endoparasitoid wasp, parasitizes the diamondback moth, Plutella xylostella, and induces host immunosuppression and lethality in the late larval stage. This study focused on changes of cellular immunity in the parasitized P. xylostella in terms of hemocyte composition and cellular functions. In third and fourth instar larvae of nonparasitized P. xylostella, granular cells represented the main hemocyte type (60-70%) and plasmatocytes were also present at around 15% among the total hemocytes. Following parasitization by C. plutellae, the relative proportions of these two major hemocytes changed very little, but the total hemocyte counts exhibited a significant reduction. Functionally, the granular cells played a significant role in phagocytosis based on a fluorescence assay using fluorecein isothiocyanate-labeled bacteria. The phagocytic activity of the granular cells occurred as early as 5 min after incubation with the bacteria, and increased during the first 40 min of incubation. The parasitism by C. plutellae significantly inhibited phagocytosis of the granular cells. Plasmatocytes also exhibited minor phagocytic activity. Moreover, plasmatocyte phagocytosis was not inhibited by parasitism. On the other hand, hemocyte-spreading behavior in response to pathogen infection was significant only for plasmatocytes, which exhibited a characteristic spindle shape upon infection. A significant spreading of the plasmatocytes was found as early as 5 min after pathogen incubation and their ratio increased during the first 40 min.An insect cytokine, plasmatocyte-spreading peptide 1 (PSP1) from Pseudoplusia includens, was highly active in inducing plasmatocyte-spreading behavior of P. xylostella in a dose-dependent manner. P. xylostella parasitized by C. plutella was significantly inhibited in plasmatocyte-spreading in response to an active dose of PSP1. An in vivo encapsulation assay showed that the parasitized P. xylostella could not effectively form the hemocyte capsules around injected agarose beads. This research demonstrates that the parasitism of C. plutellae adversely affects the total hemocyte populations in number and function, which would contribute to host immunosuppression. 相似文献
14.
Nathan J. Herrick Stuart R. Reitz James E. Carpenter Charles W. OBrien 《Biological Control》2008,45(3):386-395
Biological control offers potentially effective suppression of the diamondback moth (DBM), Plutella xylostella, a serious pest of Brassica crops. Little is known of whether multiple natural enemies have additive, antagonistic, or synergistic effects on DBM populations. No-choice and choice tests were conducted to assess predation by Podisus maculiventris on DBM larvae parasitized by Cotesia plutellae and unparasitized larvae. In no-choice tests, P. maculiventris preyed on greater numbers of parasitized than unparasitized larvae and greater numbers of young larvae than old larvae. In choice tests with early third instar DBM, there was no difference in predation between parasitized or unparasitized larvae. However, in choice tests with older prey, P. maculiventris preyed on more parasitized than unparasitized larvae. Two field studies were conducted to test if this predator and parasitoid have additive, antagonistic or synergistic effects on DBM populations and plant damage in cabbage (Brassica oleracea var. capitata). In 2002, DBM populations were significantly lower in the presence of C. plutellae but not in the presence of P. maculiventris. There was not a significant interaction between the natural enemies. Plant damage was reduced only with C. plutellae. In 2003, DBM populations were significantly lower in the presence of C. plutellae and P. maculiventris, although the combination of natural enemies did not lead to a non-additive interaction. Plant damage was unaffected by the presence of either natural enemy. Because of its greater predation on parasitized larvae, P. maculiventris could be an intraguild predator of C. plutellae. Yet, their overall combined effect in the field was additive rather than antagonistic. 相似文献
15.
Solitary koinobiont endoparasitoids generally reduce the growth of their hosts by a significant amount compared with healthy larvae. Here, we compared the development and host usage strategies of the solitary koinobiont endoparasitoid, Meteorus pulchricornis, when developing in larvae of a large host species (Mythimna separata) and a much smaller host species (Plutella xylostella). Caterpillars of M. separata were parasitized as L2 and P. xylostella as L3, when they weighed approximately 2 mg. The growth of parasitized M. separata larvae was reduced by almost 95% compared with controls, whereas parasitized P. xylostella larvae grew some 30% larger than controls. Still, adult wasps emerging from M. separata larvae were almost twice as large as wasps emerging from P. xylostella larvae, had larger egg loads after 5 days and produced more progeny. Survival to eclosion was also higher on M. separata than on P. xylostella, although parasitoids developed significantly faster when developing on P. xylostella. Our results provide evidence that koinobionts are able to differentially regulate the growth of different host species. However, there are clearly also limitations in the ability of parasitoids to regulate phenotypic host traits when size differences between different host species are as extreme as demonstrated here. 相似文献
16.
The use of genetically modified crops expressing Bacillus thuringiensis (Bt) toxins can lead to the reduction in application of broad-spectrum pesticides and an increased opportunity for supplementary biological control. Bt microbial sprays are also used by organic growers or as part of integrated pest management programs that rely on the use of natural enemies. In both applications the evolution of resistance to Bt toxins is a potential problem. Natural enemies (pathogens or insects) acting in combination with toxins can accelerate or decelerate the evolution of resistance to Bt. In the present study we investigated whether the use of a nucleopolyhedrovirus (AcMNPV) could potentially affect the evolution of resistance to the Bt toxin Cry1Ac in Plutella xylostella. At low toxin doses there was evidence for antagonistic interactions between AcMNPV and Cry1Ac resistant and susceptible insects. However, this antagonism was much stronger and more widespread for susceptible larvae; interactions were generally not distinguishable from additive for resistant larvae. Selection for resistance to Cry1Ac in two populations of P. xylostella with differing resistance mechanisms did not produce any correlated changes in resistance to AcMNPV. Stronger antagonistic interactions between Bt and AcMNPV on susceptible rather than resistant larvae can decrease the relative fitness between Bt-resistant and susceptible larvae. These interactions and the lack of cross-resistance between virus and toxin suggest that the use of NPV is compatible with resistance management to Bt products. 相似文献
17.
Amalia Kati 《Journal of insect physiology》2010,56(1):14-20
Nymphs of presumptive winged gynoparae of Aphis fabae (Hemiptera: Aphididae), were exposed to female parasitoids, Aphidius colemani (Hymenoptera: Aphidiidae) and stung once with the ovipositor. Wing development was inhibited and, when aphids were parasitised during the early stages, they did not reach the adult stage but mummies with rudimentary or no wingbuds are observed in the host's fourth-stadium. These and previous studies have suggested that wing development may be inhibited by factor(s) from the maternal parasitoid injected into the host at the time of oviposition. In an attempt to identify such factor(s), saline extracts of whole female parasitoids, abdomens, ovaries and venom glands were prepared. When a saline extract of venom glands was injected into late-second-stadium aphids, many develop to fourth-stadium nymphs with rudimentary wingbuds, indicating an effect on wing formation but also showed developmental arrest and often died when attempting to moult to the adult stage. It appears that host death may be related to physiological/biochemical interactions of parasitoid and host rather than just late stage parasitoid larvae ingesting the host's vital organs. Injections with extracts into later host stadia gave similar results with regard to development to the adult, although aphids injected in the late-fourth-stadium develop normally to the adult stage with no effect on wing formation. The results indicate that the earlier the injection before the final moult the greater the effect of the injected extract on preventing adult development.Extracts prepared from head + thorax do not affect aphid development and the results indicate that there is an active factor(s) - likely a protein - in the female parasitoid's venom that disrupts wing development and/or inhibits development to the adult stage. Surprisingly, injections of extracts from male parasitoids have similar effects but the location and function of such a factor(s) in males are unknown. 相似文献
18.
Leellen F. Solter Daniela K. Pilarska Milan Zúbrik Wei-Fone Huang 《Journal of invertebrate pathology》2010,105(1):1-10
Several species of microsporidia are important chronic pathogens of Lymantria dispar in Europe but have never been recovered from North American gypsy moth populations. The major issue for their introduction into North American L. dispar populations is concern about their safety to native non-target insects. In this study, we evaluated the susceptibility of sympatric non-target Lepidoptera to two species of microsporidia, Nosema lymantriae and Vairimorpha disparis, isolated from European populations of L. dispar and applied in field plots in Slovakia. Application of ultra low volume sprays of the microsporidia maximized coverage of infective spores in a complex natural environment and, thus, exposure of non-target species to the pathogens. Of 653 non-target larvae collected from plots treated with V. disparis in 2002, 18 individual larvae representing nine species in four families were infected. These plots were monitored for two subsequent seasons and V. disparis was not recovered from non-target species. Of 2571 non-target larvae collected in N. lymantriae-treated sites, one larva was found to be infected. Both species of microsporidia, particularly N. lymantriae, appear to have a very narrow host range in the field, even when an inundative technique is used for their introduction. V. disparis infections in L. dispar exceeded 40% of recovered larvae in the treated study sites; infection rates were lower in sites sprayed with N. lymantriae. Several naturally-occurring pathogens were recorded from the non-target species. The most common pathogen, isolated from 21 species in eight families, was a microsporidium in the genus Cystosporogenes. 相似文献
19.
L. Fiandra 《Journal of insect physiology》2010,56(2):165-169
The larval midgut of the hymenopteran parasitoid Aphidius ervi accomplishes a large transport of nutrients from the lumen to the haemocoel, providing most of the organic molecules necessary for rapid insect development. l-amino acids in general, and leucine in particular, are efficiently accumulated in the larval body. We show here that the intact midgut of early 3rd instar larvae incubated in vitro can take up [3H]l-leucine from the basolateral side of the epithelium by transporters insensitive to the presence of monovalent cations. When the midgut is opened and the apical membrane of the absorbing epithelial cells is exposed to the medium containing radiolabelled leucine, a sodium-dependent uptake of the amino acid becomes apparent, disclosing the presence of a symport mechanism. Inhibition experiments of leucine uptake by a 100-fold excess of different amino acids, selected according to the properties of their side chain, revealed that this apical sodium-dependent mechanism is a broad spectrum transport system with a specialization for the absorption of aliphatic amino acids, that can also transfer glutamine and proline, but not phenylalanine, lysine and arginine. Altogether the experimental results obtained with intact- and open-gut preparations suggest that leucine transport across the basolateral membrane is mediated by both an uniporter and an obligatory amino acid exchange mechanism. 相似文献
20.
A range of crops have been transformed with delta-endotoxin genes from Bacillus thuringiensis (Bt) to produce transgenic plants with high levels of resistance to lepidopteran pests. Parasitoids are important natural enemies of lepidopteran larvae and the effects of Bt plants on these non-target insects have to be investigated to avoid unnecessary disruption of biological control. This study investigated the effects of Cry1Ac-expressing transgenic oilseed rape (Brassica napus) on the solitary braconid endoparasitoid Cotesia plutellae in small-scale laboratory experiments. C. plutellae is an important natural enemy of the diamondback moth (Plutella xylostella), the most important pest of brassica crops world-wide. Bt oilseed rape caused 100% mortality of a Bt-susceptible P. xylostella strain but no mortality of the Bt-resistant P. xylostella strain NO-QA. C. plutellae eggs laid in Bt-susceptible hosts feeding on Bt leaves hatched but premature host mortality did not allow C. plutellae larvae to complete their development. In contrast, C. plutellae developed to maturity in Bt-resistant hosts fed on Bt oilseed rape leaves and there was no effect of Bt plants on percentage parasitism, time to emergence from hosts, time to adult emergence and percentage adult emergence from cocoons. Weights of female progeny after development in Bt-resistant hosts did not differ between plant types but male progeny was significantly heavier on wildtype plants in one of two experiments. The proportion of female progeny was significantly higher on Bt plants in the first experiment with Bt-resistant hosts but this effect was not observed again when the experiment was repeated. 相似文献