首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bonamia ostreae is a protozoan, affiliated to the order Haplosporidia and to the phylum Cercozoa. This parasite is intracellular and infects haemocytes, cells notably involved in oyster defence mechanisms. Bonamiosis due to the parasite B. ostreae is a disease affecting the flat oyster, Ostrea edulis. The strategies used by protozoan parasites to circumvent host defence mechanisms remain largely unknown in marine bivalve molluscs. In the present work, in vitro experiments were carried out in order to study the interactions between haemocytes from O. edulis and purified parasite, B. ostreae. We monitored cellular and molecular responses of oyster haemocytes by light microscopy, flow cytometry and real-time PCR 1, 2, 4 and 8 h p.i. Light microscopy was used to measure parasite phagocytosis by oyster haemocytes. Parasites were observed inside haemocytes 1 h p.i. and the parasite number increased during the time course of the experiment. Moreover, some bi-nucleated and tri-nucleated parasites were found within haemocytes 2 and 4 h p.i., respectively, suggesting that the parasite can divide inside haemocytes. Host responses to B. ostreae were investigated at the cellular and molecular levels using flow cytometry and real-time PCR. Phagocytosis capacity of haemocytes, esterase activity and production of radical oxygen species appeared modulated during the infection with B. ostreae. Expression levels of expressed sequence tags selected in this study showed variations during the experiment as soon as 1 h p.i. An up-regulation of galectin (OeGal), cytochrome p450 (CYP450), lysozyme, omega GST (OGST), super oxide dismutase Cu/Zn (Oe-SOD Cu/Zn) and a down-regulation of the extracellular super oxide dismutase SOD (Oe-EcSOD) were observed in the presence of the parasite. Finally, the open reading frames of both SODs (Oe-SOD Cu/Zn and Oe-EcSOD) were completely sequenced. These findings provide new insights into the cellular and molecular bases of the host-parasite interactions between the flat oyster, O. edulis, and the parasite, B. ostreae.  相似文献   

2.
Bonamia ostreae is an intracellular protozoan parasite, infecting haemocytes of the European flat oyster Ostrea edulis. Oyster defence mechanisms mainly rely on haemocytes. In the present study in vitro interactions between parasites and flat oyster haemocytes were investigated using flow cytometry and light microscopy.Haemocyte parameters including: non specific esterase activity, reactive oxygen species (ROS) production and phagocytosis were monitored using flow cytometry after 2 h cell incubation with live and dead B. ostreae. Two ratios of parasites per haemocyte were tested (5:1 and 10:1), haemocytes alone were used as controls and the experiment was carried out three times. Flow cytometry revealed a decrease of non specific esterase activities and ROS production by haemocytes after incubation with live parasites, while there was little difference in phagocytosis activity when compared with controls. Similarly, dead parasites induced a decrease in haemocyte activities but to a lesser extent compared to live parasites. These results suggest that B. ostreae actively contributes to the modification of haemocyte activities in order to ensure its own intracellular survival.  相似文献   

3.
4.
A research project to compare productive traits (growth and mortality), disease susceptibility and immune capability between Ostrea edulis stocks was performed. This article reports the results on the immune capability and its relation with infection by the intrahaemocytic protozoan Bonamia ostreae. Four to five oyster spat families were produced from each of four European flat oyster populations (one from Ireland, one from Greece and two from Galicia, Spain) in a hatchery. The spat were transferred to a raft in the Ría de Arousa (Galicia) for on growing for 2 years. Total haemocyte count (THC) and differential haemocyte count (DHC) were estimated monthly through the second year of growing-out. Three types of haemocytes were distinguished: granulocytes (GH), large hyalinocytes (LHH) and small hyalinocytes (SHH). Significant correlations between the mean relative abundance of GH and SHH of the families and the mean prevalence of B. ostreae, the overall incidence of pathological conditions and the cumulative mortality of the families were found; these correlations supported the hypothesis that high %GH and low %SHH would enhance oyster immune ability and, consequently, would contribute to lower susceptibility to disease and longer lifespan. Infection by B. ostreae involved a significant increase of circulating haemocytes, which affected more markedly the LHH type. The higher the infection intensity the higher the %LHH. This illustrates the ability of B. ostreae to modulate the immune responses of the O. edulis to favour its own multiplication. A significant reduction of the phenoloxidase activity in the haemolymph of oysters O. edulis infected by B. ostreae was observed. Nineteen enzymatic activities in the haemolymph of O. edulis and Crassostrea gigas (used as a B. ostreae resistant reference) were measured using the kit api ZYM®, Biomerieux. Qualitative and quantitative differences in enzyme activities in both haemocyte and plasma fractions between B. ostreae noninfected O. edulis from different origins were recorded. However, no clear positive association between enzyme activity and susceptibility to bonamiosis was found. The only enzyme detected in the resistant species C. gigas that was not found in the susceptible one O. edulis was β-glucosidase (in plasma). B. ostreae infected O. edulis showed significant increase of some enzyme activities and the occurrence of enzymes that were not detected in noninfected oysters. These changes could be due to infection-induced enzyme synthesis by the host or to enzyme synthesis by the parasite.  相似文献   

5.
6.
Environmental DNA approaches are increasingly used to detect microorganisms in environmental compartments, including water. They show considerable advantages to study non-cultivable microorganisms like Bonamia ostreae, a protozoan parasite inducing significant mortality in populations of flat oyster Ostrea edulis. Although B. ostreae development within the host has been well described, questions remain about its behaviour in the environment. As B. ostreae transmission is direct, seawater appears as an interesting target to develop early detection tools and improve our understanding of disease transmission mechanisms. In this context, we have developed an eDNA/eRNA approach allowing detecting and quantifying B. ostreae 18S rDNA/rRNA as well as monitoring its presence in seawater by real-time PCR. B. ostreae DNA could be detected up to 4 days while RNA could be detected up to 30 days, suggesting a higher sensitivity of the eRNA-based tool. Additionally, more than 90% of shed parasites were no longer detected after 2 days outside the oysters. By allowing B. ostreae detection in seawater, this approach would not only be useful to monitor the presence of the parasite in oyster production areas but also to evaluate the effect of changing environmental factors on parasite survival and transmission.  相似文献   

7.
Bonamia ostreae is a protistan parasite of the European flat oyster, Ostrea edulis. Though direct transmission of the parasite can occur between oysters, it is unclear if this represents the complete life cycle of the parasite, and the role of a secondary or intermediate host or carrier species cannot be ruled out. In this preliminary study, benthic macroinvertebrates and zooplankton from a B. ostreae-endemic area were screened for the presence of parasite DNA, using polymerase chain reaction (PCR). Eight benthic macroinvertebrates and nineteen grouped zooplankton samples gave positive results. Certain species, found positive for the parasite DNA, were then used in laboratory transmission trials, to investigate if they could infect na?ve oysters. Transmission of B. ostreae was effected to two na?ve oysters cohabiting with the brittle star, Ophiothrix fragilis.  相似文献   

8.
In this study, we described the cytosolic HSP90 of Bonamia ostreae, an intracellular parasite of Ostrea edulis hemocytes. The complete open reading frame was assembled by Rapid Amplification cDNA Ends reactions on cDNA of B. ostreae‐infected hemocytes. HSP90 amplification was corroborated in infected oysters and B. ostreae purified cells. The functionality of the HSP90, studied by inhibitory assays with radicicol, suggests that this protein may play a role in hemocyte invasion. Our results inform the molecular basis that governs B. ostreae–O. edulis interactions.  相似文献   

9.
The oyster ovarian parasite Marteilioides chungmuensis has been reported from Korea and Japan, damaging the oyster industries. Recently, Marteilioides-like organisms have been identified in other commercially important marine bivalves. In this study, we surveyed Marteilioides infection in the Manila clam Ruditapes philippinarum, Suminoe oyster Crassostrea ariakensis, and Pacific oyster Crassostrea gigas, using histology and Marteilioides-specific small subunit (SSU) rDNA PCR. The SSU rDNA sequence of M. chungmuensis (1716 bp) isolated from C. gigas in Tongyoung bay was 99.9% similar to that of M. chungmuensis reported in Japan. Inclusions of multi-nucleated bodies in the oocytes, typical of Marteilioides infection, were identified for the first time in Suminoe oysters. The SSU rDNA sequence of a Marteilioides-like organism isolated from Suminoe oysters was 99.9% similar to that of M. chungmuensis. Marteilioides sp. was also observed from 7 Manila clams of 1840 individuals examined, and the DNA sequences of which were 98.2% similar to the known sequence of M. chungmuensis. Unlike Marteilioides infection of Pacific oysters, no remarkable pathological symptoms, such as large multiple lumps on the mantle, were observed in infected Suminoe oysters or Manila clams. Distribution of the infected Manila clams, Suminoe oysters and Pacific oysters was limited to small bays on the south coast, suggesting that the southern coast is the enzootic area of Marteilioides infection.  相似文献   

10.
11.
Giardia duodenalis is an intestinal parasite of many vertebrates. The presence of G. duodenalis in the marine environment due to anthropogenic and wildlife activity is well documented, including the contributions from untreated sewage and storm water, agricultural run-off and droppings from terrestrial animals. Recently, studies have detected this protistan parasite in the faeces of marine vertebrates such as whales, dolphins, seals and shore birds. To explore the population biology of G. duodenalis in marine life, we determined the prevalence of G. duodenalis in two species of seal (Halichoerus grypus, Phoca vitulina vitulina and Phoca vitulina richardsi) from the east and west coasts of the USA, sequenced two loci from G. duodenalis-positive samples to assess molecular diversity and examined G. duodenalis distribution amongst these seals and other marine vertebrates along the east coast. We found a significant difference in the presence of G. duodenalis between east and west coast seal species. Only the zoonotic lineages of G. duodenalis, Assemblages A and B and a novel lineage, which we designated as Assemblage H, were identified in marine vertebrates. Assemblages A and B are broadly distributed geographically and show a lack of host specificity. Only grey seal (Halichoerus grypus) samples and one gull sample (Larus argentatus) from a northern location of Cape Cod, Massachusetts, USA, showed the presence of Assemblage H haplotypes; only one other study of harbour seals from the Puget Sound region of Washington, USA previously recorded the presence of an Assemblage H haplotype. Assemblage H sequences form a monophyletic clade that appears as divergent from the other seven Assemblages of G. duodenalis as these assemblages are from each other. The discovery of a previously uncharacterised lineage of G. duodenalis suggests that this parasite has more genetic diversity and perhaps a larger host range than previously believed.  相似文献   

12.
The proposition to introduce the Asian oyster Crassostrea ariakensis to the mid-Atlantic region of the USA is being considered with caution, particularly after the discovery of a novel microcell haplosporidian parasite, Bonamia sp., in North Carolina. Although this parasite was found to be pathogenic in C. ariakensis under warm euhaline conditions, its persistence in C. ariakensis exposed to various temperature and salinity combinations remained unresolved. In this laboratory experiment, we tested the influence of temperature in combination with a wide range of salinities (10, 20 and 30 psu) on Bonamia sp. Temperature was either changed from warm (>20 °C) to cold (6 °C for 6 weeks) and back to warm or maintained constant and warm. Warm temperature was associated with higher host mortality than cold temperature, suggesting that temperature influenced Bonamia sp. pathogenicity. The effect of salinity was revealed under warm temperature with highest mortality levels observed in infected C. ariakensis exposed to 30 psu. When temperature was increased following low-temperature exposure, Bonamia sp. was not detected; however sub-optimal experimental conditions may have contributed to this result, making it difficult to draw conclusions regarding the reemergence of the parasite after low-temperature exposure. Although the overwintering of Bonamia sp. in C. ariakensis will need to be further investigated, the results presented here suggest that Bonamia sp. may be able to persist in C. ariakensis under a combination of low temperature and meso- to euhaline salinities.  相似文献   

13.
14.
Culloty  Sarah C.  Mulcahy  Maire F. 《Hydrobiologia》2001,465(1-3):181-186
The main oyster species produced in Ireland up to the 1980's was the European flat oyster Ostrea edulis. However, since then, production of this species has been severely affected by the presence of the protistan Bonamia ostreae, which was diagnosed in a population of flat oysters on the south coast following heavy mortalities. Research has been ongoing since the first diagnosis in Ireland and has concentrated on aspects of the biology of both the host and the parasite. In recent years research has concentrated on screening populations of oysters to identify any with reduced susceptibility to the parasite.  相似文献   

15.
We have identified quantitative trait loci (QTL) in the flat oyster (Ostrea edulis) for resistance to Bonamia ostreae, a parasite responsible for the dramatic reduction in the aquaculture of this species. An F2 family from a cross between a wild oyster and an individual from a family selected for resistance to bonamiosis was cultured with wild oysters injected with the parasite, leading to 20% cumulative mortality. Selective genotyping of 92 out of a total of 550 F2 progeny (i.e., 46 heavily infected oysters that died and 46 parasite-free oysters that survived) was performed using 20 microsatellites and 34 amplification fragment length polymorphism primer pairs. Both a two-stage testing strategy and QTL interval mapping methods were used. The two-stage detection strategy had a high power with a low rate of false positives and identified nine and six probable markers linked to genes of resistance and susceptibility, respectively. Parent-specific genetic linkage maps were built for the family, spanning ten linkage groups (n = 10) with an observed genome coverage of 69–84%. Three QTL were identified by interval mapping in the first parental map and two in the second. Good concordance was observed between the results obtained after the two-stage testing strategy and QTL mapping.  相似文献   

16.
European flat oyster (Ostrea edulis) production has suffered a severe decline due to bonamiosis. The responsible parasite enters in oyster haemocytes, causing an acute inflammatory response frequently leading to death. We used an immune-enriched oligo-microarray to understand the haemocyte response to Bonamia ostreae by comparing expression profiles between naïve (NS) and long-term affected (AS) populations along a time series (1 d, 30 d, 90 d). AS showed a much higher response just after challenge, which might be indicative of selection for resistance. No regulated genes were detected at 30?d in both populations while a notable reactivation was observed at 90 d, suggesting parasite latency during infection. Genes related to extracellular matrix and protease inhibitors, up-regulated in AS, and those related to histones, down-regulated in NS, might play an important role along the infection. Twenty-four candidate genes related to resistance should be further validated for selection programs aimed to control bonamiosis.  相似文献   

17.
18.
Examination of European flat oysters, Ostrea edulis, from the Dutch oyster culture, but originating in France, revealed a new disease due to a protistan parasite. Light and electron microscope studies revealed that the parasite belongs to the haplosporidan genus Minchinia. Since comparison with other Minchinia spp. indicate that it is new, the name Minchinia armoricana nov. sp. is proposed. Thus far, the parasite was very rare; only two diseased oysters were observed among ca. 3700 specimens examined histologically during a 2.5-year period. The diseased oysters showed macroscopically a peculiar brown discoloration and microscopically many sporocysts with spores in the connective tissue. Beside the two diseased oysters, another one was observed with an infection of unidentified plasmodial stages in the connective tissue. These may be developmental stages of the new species M. armoricana.  相似文献   

19.
Floral initiation and development of Hedysarum varium, Onobrychis melanotricha and Alhagi persarum was studied using epi-illumination light-microscopy techniques. The studied species belong to the tribe Hedysareae of the inverted repeat loss clade (IRLC clade), which is characterized by missing the large inverted repeat in the chloroplast genome. The main aim of our study was to determine developmental bases for similarities and differences among the three taxa and to verify the position of Alhagi relative to other genera of the IRLC clade. According to our observations, bracteoles are missing in Onobrychis melanotricha, but are present in the other two species. All three species share unidirectional sepal initiation starting with a median abaxial sepal and bidirectional petal initiation. Stamen initiation is unidirectional in all except in the outer stamen whorl of Hedysarum varium, where it is bidirectional. An important ontogenetic feature in O. melanotricha is the existence of five common primordia, which give rise to petal and stamen primordia. Although in H. varium and O. melanotricha common primordia are observed at some stages in floral organ initiations, in Alhagi all organs are initiated separately. Moreover, overlap in time of floral organs initiation occurs in H. varium and O. melanotricha, but not in A. persarum. The carpel initiates concurrently with the petal primordia in all. It might be presumed that Alhagi is primitive in relation to the other studied Hedysareae taxa, due to the presence of bracteoles, the absence of common primordia, and the lack of overlap in time of different organ initiations.  相似文献   

20.
Babesiosis, the disease caused by tick-borne hematozoan parasites of the genus Babesia, is particularly common in dogs, and is caused by several “large” species of Babesia, as well as by an increasing number of “small” species of Babesia, some of which appear to be more closely related to members of the genus Theileria. In this work, blood samples were collected from 848 randomly selected, asymptomatic dogs and from 81 symptomatic dogs, microscopically positive for Babesia, and characterised by PCR and sequence analysis of a fragment of the ssrRNA gene. A prevalence of 3.42% (29 of 848) was found in asymptomatic dogs and sequence analysis revealed the presence of Babesia canis canis in 20 dogs (69%), Babesia gibsoni in six dogs (21%), Babesia canis vogeli in two dogs (7%) and Theileria annae in one dog (3%). In the group of symptomatic dogs, which were all positive by PCR, B. canis canis was the predominant species (78 dogs, or 96%), followed by single infections with B. canis vogeli, Babesia caballi and Theileria equi. Our study has confirmed that dogs are infected with a wide range of both large and small piroplasm species and subspecies, including B. caballi and T. equi, two parasites usually found in horses. The detection of the pathogenic species B. canis canis and B. gibsoni in asymptomatic dogs indicates that the relationship between parasite species/subspecies and clinical signs of infection in dogs deserves further investigation. Finally, the identities of the tick vectors transmitting T. annae and B. caballi remain to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号