首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen sulfide (H2S) has been shown to effect physiological alterations in several animals, frequently leading to an improvement in survival in otherwise lethal conditions. In the present paper, a volatility bioassay system was developed to evaluate the survivorship of Drosophila melanogaster adults exposed to H2S gas that emanated from a K2S donor. Using this bioassay system, we found that H2S exposure significantly increased the survival of flies under arid and food-free conditions, but not under humid and food-free conditions. This suggests that H2S plays a role in desiccation tolerance but not in nutritional stress alleviation. To further confirm the suggestion, the mRNA levels of two desiccation tolerance-related genes Frost and Desat2, and a starvation-related gene Smp-30, from the control and treated flies were measured by quantitative real-time PCR. These genes were up-regulated within 2 h when the flies transferred to the arid and food-free bioassay system. Addition of H2S further increased Frost and Desat2 mRNA levels, in contrast to Smp-30. Thus, our molecular results were consistent with our bioassay findings. Because of the molecular and genetic tools available for Drosophila, the fly will be a useful system for determining how H2S regulates various physiological alterations.  相似文献   

2.
The moulting cycle and growth of the larval integument of Drosophila melanogaster has been studied by light and electron microscopy. Growth during the first, second and third larval instars is accompanied by 3.0-, 3.4- and 3.7-fold increases in surface area, respectively. Growth in surface area occurs continuously during the larval stages, with no detectable relationship to the moulting cycle. Measurements of the thickness of the cuticular layers show that the endocuticle grows in thickness by apposition and in surface area by stretching. The pre-apolytic epicuticle remains at fairly constant thickness during the increase in surface area, indicating that it grows by intussusception of new components. Post-apolytic epicuticle becomes thinner and increases in surface area by stretching. The epicuticle and pre-ecdysial endocuticle are traversed by filaments, but these do not penetrate the endocuticle secreted after ecdysis. We suggest that the filaments transport breakdown products from the old cuticle inward to the epidermis for reutilization. The growth and deposition of cuticle in two larval growth mutants, lethal (2) giant larvae and Chubby Tubby, involves mechanisms similar to those found in wild-type larvae, but in Chubby Tubby the endocuticle contains inclusions which are ultrastructurally similar to dense epicuticle.  相似文献   

3.
Ecdysteroid titres in whole flies and different tissues of adult male and female Drosophila were determined at various times after eclosion using a radioimmunoassay. The ecdysteroid titre decreased as the flies matured after eclosion. The differences in titre between males and females can be accounted for by their difference in body weight. The ecdysteroids were found to be distributed throughout several tissues. At eclosion not all of the ecdysteroid complement present could be accounted for by that found localised in tissues. After maturation of the flies the ecdysteroids in various tissues can account for the majority of that detected in whole-fly extracts. Ecdysteroids were produced during in vitro culture of various tissues, but the quantities detected were low by comparison with ring glands of wandering 3rd-instar larvae. Neither the ovaries nor the abdominal body walls (fat body) seem to be a major source of hormone, and they are only able to convert minute quantities of ecdysone to the biologically active form, 20-hydroxyecdysone, in vitro. The amounts of 20-hydroxyecdysone present were measured using high performance liquid chromatography and radioimmunoassay. We tentatively suggest that the differential experession of the yolk-protein-genes in the fat bodies of males and females does not result from differences in hormone titres between them.  相似文献   

4.
In this paper we show that, (1) Drosophila melanogaster larvae utilize a variety of pupal microhabitats in an orchard, (2) variation in larval foraging path length, pupation distance from the food and pupal microhabitat preference (on or off the fruit) is genetically based and, (3) variation in these behaviours can be maintained in a spatially heterogenous environment since there is a reversal in pupation site suitability in wet and dry pupal microhabitats. Differences in path length in both laboratory and natural populations can be attributed to genes on the second pair of chromosomes and is under simple genetic control, whereas differences in pupal height are polygenically inherited (the second pair of chromosomes influences pupal height three times more than the third pair). Pupae collected from on-fruit sites had shorter foraging path lengths and lower pupal heights than off-fruit populations. Populations from the orchard maintained their field pupal microhabitat preferences even after 1 year of rearing them in the laboratory. Larvae with the sitter larval phenotype (short path lengths and low pupal heights tended to pupate more on-fruit than those with the rover phenotype (long path lengths and high pupal heights). To determined if these genetically based differences in microhabitat preference contributed to fitness, larval pupation behaviour was studied in a “field assay” (dish with fruit on soil) with soil water content varied. At low soil water contents, pupal survivorship was significantly better on the fruit whereas, at high soil water contents, survivorship was better in the soil. There was a reversal in which microhabitat (dry or wet) was a better site for pupation. In the field environment where soil water content fluctuates in space and time, such a reversal would explain the maintenance of genetic variation for these larval behaviours. Another selective agent acting on D. melanogaster larvae in our orchard is parasitization by Asobara tabida. This parasitoid parasitizes larvae with high locomotory scores (e.g. rovers) significantly more than those with low scores (sitters). This study relates laboratory phenotypes to field phenotypes thereby linking the ecological, behavioural and genetic components of larval habitat selection in D. melanogaster.  相似文献   

5.
Newly eclosed Drosophila melanogaster females contain only previtellogenic stage oöcytes and no immunologically detectable female specific haemolymph protein. During the subsequent 48 hr the concentration of female specific protein in the haemolymph rises to a plateau value of 21 μg/μl; at this time yolk protein represents about one third of the total haemolymph protein in adult females. The first mature (stage 14) oöcytes are observed at 48 hr post eclosion. The female specific haemolymph protein and the major protein from mature oöcytes are electophoretically and immunologically the same or very similar. Injection of alpha amanitin into newly eclosed females inhibits the development of mature oöcytes and the degree of inhibition depends on the age of the female at the time of injection. Phenocopies of non-vitellogenic mutants result when alpha amanitin is injected into newly eclosed females; after 36 hr post eclosion no visible inhibition of vitellogenesis (as observed morphologically at 72 hr post eclosion) can be produced by alpha amanitin.  相似文献   

6.
In previous experiments we found that Drosophila melanogaster lines selected for increased adult desiccation resistance had increased resistance to other environmental stresses at the adult stage including starvation, intense 60Co-γ radiation and a toxic ethanol level. In further studies on these lines, we now show that selection did not alter resistance to desiccation and ethanol at the larval stage. As well as having a lower early fecundity, selected lines showed increased adult male longevity and increased viability at high larval densities compared with control lines. There were no changes in development time or mating success. The increased male longevity is consistent with the reduced metabolic rate of the selected lines.
A genetic correlation between resistance to different stresses was confirmed by an analysis of isofemale lines derived from a population founded by flies from a stress-resistant line and an unselected line. The results are consistent with the existence of genes segregating in natural populations conferring increased general stress resistance.  相似文献   

7.
8.
The upper critical thermal maximum (CTmax) of metazoans varies over a wide range, and its determinative factors, such as oxygen limitation, remain controversial. Induction of thermoprotective mechanisms after challenge by sublethal heat stress has been well documented in many organisms, including the model fly Drosophila melanogaster. Interestingly, however, other challenges—notably a period of anoxia—induce post-exposure thermoprotective effects in some organisms such as locusts and houseflies. Here I show, using thermolimit respirometry, that acute hypoxia during thermal stress significantly reduced the CTmax of D. melanogaster, but only below an oxygen partial pressure of about 10 kPa (39.0±0.4 SE °C at 9.3 kPa vs. 36.0±0.2 SE °C at 3.5 kPa). Likewise, the scope for voluntary motor activity declined sharply below 10 kPa and was essentially eliminated at 2.3 kPa. Respiratory water loss increased highly significantly below about 10 kPa. The post-CTmax release of a large quantity of CO2 is shown to be independent of loss of spiracular control, but dependent at least in part on oxygen availability. The results are broadly in accord with Pörtner's oxygen limitation hypothesis, but suggest that acute oxygen limitation only becomes an important factor at partial pressures less than half of typical atmospheric levels.  相似文献   

9.
Insects can improve their desiccation resistance by one or more of (1) increasing their water content; (2) decreasing water loss rate; or (3) increasing the amount of water able to be lost before death. Female Drosophila melanogaster have previously been reported to increase their resistance to desiccation after a desiccation pre-treatment and recovery, but the mechanism of this increased desiccation resistance has not been explored. We show that female, but not male adult D. melanogaster increased their resistance to desiccation after 1 h of recovery from a 3 to 4.5 h pre-treatment that depletes them of 10% of their water content. The pre-treatment did not result in an increase in water content after recovery, and there is a slight increase in water content at death in pre-treated females (but no change in males), suggesting that the amount of water loss tolerated is not improved. Metabolic rate, measured on individual flies with flow-through respirometry, did not change with pre-treatment. However, a desiccation pre-treatment did result in a reduction in water loss rate, and further investigation indicated that a change in cuticular water loss rate accounted for this decrease. Thus, the observed increase in desiccation resistance appears to be based on a change in cuticular permeability. However, physiological changes in response to the desiccation pre-treatment were similar in male and female, which therefore does not account for the difference in rapid desiccation hardening between the sexes. We speculate that sex differences in fuel use during desiccation may account for the discrepancy.  相似文献   

10.
The construction of artificial seaweed beds in the intertidal zone is a challenge due to extreme levels of physical stress. In order to provide a basis for the construction using the dispersal of microscopic juveniles, a three-way factorial experimental design was used to evaluate the tolerance of Sargassum thunbergii germlings shortly released from fertile thalli to temperature, salinity and desiccation in this study. Results revealed that temperature, salinity and desiccation significantly affected the growth and survival of germlings. Germlings showed rapid growth with relative growth rate (RGR, % day−1) over 16% when cultured at 25 °C and full immersion in normal seawater. Although growths of germlings subjected to moderate conditions were significantly inhibited, RGRs over 13% were obtained. The RGRs of germlings below 10% were observed only at 35 °C and 9 h desiccation treatments. In comparison to growth, survival was less affected by physical stress. Germlings showed low mortalities below 10% under appropriate conditions (25 °C and 30 °C combined with full immersion), and below 60% under moderate conditions, by the end of experiment. However, the mortality rates increased to over 90% under extreme conditions (9 h desiccation and 35 °C combined with full immersion in salinity of 12). These results showed that S. thunbergii germlings had high tolerance to physical stresses. In addition to the main effects, both two-way and three-way interactions between temperature, salinity and desiccation were significant. Based on the magnitude of effect, desiccation was the predominant factor affecting both growth and survival. According to the results, construction of artificial tanks in natural habitat to minimize desiccation may be an effective strategy for S. thunbergii restoration using germlings.  相似文献   

11.
According to ecological and behavioural studies, Drosophila simulans is considered to be less tolerant of darkness than its sibling species D. melanogaster which is well adapted both behaviourally and physiologically to darkness. The relationships between physiological and behavioural adaptations have been analysed by studying the developmental and the reproductive capacities of D. simulans submitted to various light regimes (LL, LD 12:12, DD). This species has a lower reproductive capacity than D. melanogaster but failed to react to light treatment. In particular, D. simulans showed no effect of darkness on either fertilization or ovarian function. The lack of differences between D. melanogaster and D. simulans as regards their physiological capacities in relation to light regime suggests that the selective pressures of light may act at different levels of regulation.  相似文献   

12.
Variation in temperature imposes selection pressures on organisms. In variable environments, organisms must adopt fixed or plastic strategies that enable persistence over a broad range of temperatures. In coarse-grained environments, where the thermal variation among generations exceeds that within generations, selection should favor developmental plasticity. Here, we compare the degree of developmental plasticity of thermal tolerances between populations of Drosophila melanogaster from environments with relatively high (Marlton, NJ, USA) and relatively low (Miami, FL, USA) variance in temperature among generations. We predicted that flies from Marlton would exhibit a greater plasticity of thermal tolerances than would flies from Miami. Flies from both populations were reared in three ecologically relevant treatments, after which we assessed knockdown and chill-coma recovery times. Flies from both populations responded plastically to temperature, but flies from New Jersey did not exhibit greater plasticity. Our results complement previous comparative studies and indicate that selection favors plasticity of thermal tolerances equally in these populations.  相似文献   

13.
The concentration of protein granules was determined cytologically in different regions of the fat body during the latter half of the third larval instar of Drosophila melanogaster. The measurements made at 6 hr intervals from 72–96 hr larvae showed that the concentration of the granules was the highest in the posterior, lowest in the anterior and intermediate in the middle region of the fat body. From these measurements, it was shown that the rate of granule formation was different in each region. Furthermore, there is a strong indication that at any given stage, the rate increases gradually and continuously from the anterior to the posterior region. When the fat body from larvae prior to the time of granule formation was cultured for three days in ecdysterone-containing medium, protein granules were produced in the anterior, middle and posterior regions in the same concentration as that in 90 hr larvae. The same gradient of protein granule formation in vitro is found whether the fat body is cultured as an intact piece or as three separate, dissected regions. The putative adaptive advantage of region-dependent granule formation is discussed.  相似文献   

14.
The resting membrane potential (RMP) of most cells is not greatly influenced by the transmembrane calcium gradient because at rest, the membrane has very low permeability to calcium. We have observed, however, that the resting membrane potential of muscle cells in the larval bodywall of Drosophila melanogaster varies widely as the external calcium concentration is modified. The RMP depolarized as much as 21.8 mV/mM calcium at low concentrations, and on average, about 10 mV/mM across a range typical of neurophysiological investigations. The extent to which muscle RMP varies has important implications for the measurement of synaptic potentials as well. Two parameters of excitatory junctional potential (EJP) voltage were compared across a range of RMPs. EJP amplitude (ΔV) and peak voltage (maxima) change as a function of RMP; on average, a 10 mV change in RMP elicits a 4-5 mV change in EJP amplitude and peak voltage. The influence of the calcium gradient on resting and synaptic membrane potentials led us to investigate the endogenous ion concentrations of larval hemolymph. In addition to the major monovalent ions and calcium, we report the first voltammetric analysis of magnesium concentration in larval fruit fly hemolymph.  相似文献   

15.
During normal oögenesis in many insects some of the oöcytes fail to mature; instead they degenerate and are resorbed. In this work oöctte degeneration was investigated in Drosophila melanogaster females and found to be limited to early vitellogenic stages (stages 8–10). Even when retained for up to 18 days by females, mature (stage 14) oöcytes showed unaltered protein patterns after separation by SDS polyacrylamide electrophoresis, indicating that protein breakdown, which is characteristic of degeneration, does not occur in chorionated oöcytes.A number of environmental parameters were shown to influence the percentage of degenerating oöcytes in females. Strong responses as reflected by increased stage-8 and 9 oöcyte degeneration were found in females subjected to suboptimal (but not starvation) medium, virgin females, females mechanically unable to oviposit, and females unable to locate suitable oviposition sites. Little or no response was seen in females subjected to crowding, however, since all of these environmental parameters except adult crowding have been shown to decrease fecundity, and therefore the rate of oöcyte production, it is suggested that oöcyte degeneration is a strategy for decreasing the rate of oöcyte production in Drosophila.  相似文献   

16.
The clock protein PERIOD (PER) displays circadian cycles of accumulation, phosphorylation, nuclear translocation and degradation in Drosophila melanogaster clock cells. One exception to this pattern is in follicular cells enclosing previtellogenic ovarian egg chambers. In these cells, PER remains high and cytoplasmic at all times of day. Genetic evidence suggest that PER and its clock partner TIMELESS (TIM) interact in these cells, yet, they do not translocate to the nucleus. Here, we investigated the levels and subcellular localization of PER in older vitellogenic follicles. Cytoplasmic PER levels decreased in the follicular cells at the onset of vitellogenesis (stage 9). Interestingly, PER was observed in the nuclei of some follicular cells at this stage. PER signal disappeared in more advanced (stage 10) vitellogenic follicles. Since the phosphorylation state of PER is critical for the progression of circadian cycle, we investigated the status of PER phosphorylation in the ovary and the expression patterns of DOUBLETIME (DBT), a kinase known to affect PER in the clock cells. DBT was absent in previtellogenic follicular cells, but present in the cytoplasm of some stage 9 follicular cells. DBT was not distributed uniformly but was present in patches of adjacent cells, in a pattern resembling PER distribution at the same stage. Our data suggest that the absence of dbt expression in the follicular cells of previtellogenic egg chambers may be related to stable and cytoplasmic expression of PER in these cells. Onset of dbt expression in vitellogenic follicles coincides with nuclear localization of PER protein.  相似文献   

17.

Background

Amorphous silica nanoparticles (aSNPs) are used for various applications including food industry. However, limited in vivo studies are available on absorption/internalization of ingested aSNPs in the midgut cells of an organism. The study aims to examine cellular uptake of aSNPs (< 30 nm) in the midgut of Drosophila melanogaster (Oregon R+) owing to similarities between the midgut tissue of this organism and human and subsequently cellular stress response generated by these nanoparticles.

Methods

Third instar larvae of D. melanogaster were exposed orally to 1–100 μg/mL of aSNPs for 12–36 h and oxidative stress (OS), heat shock genes (hsgs), membrane destabilization (Acridine orange/Ethidium Bromide staining), cellular internalization (TEM) and apoptosis endpoints.

Results

A significant increase was observed in OS endpoints in the midgut cells of exposed Drosophila in a concentration- and time-dependent manner. Significantly increased expression of hsp70 and hsp22 along with caspases activation, membrane destabilization and mitochondrial membrane potential loss was also observed. TEM analysis showed aSNPs-uptake in the midgut cells of exposed Drosophila via endocytic vesicles and by direct membrane penetration.

Conclusion

aSNPs after their internalization in the midgut cells of exposed Drosophila larvae show membrane destabilization along with increased cellular stress and cell death.

General significance

Ingested aSNPs show adverse effects on the cells of GI tract of the exposed organism thus their industrial use as a food-additive may raise concern to human health.  相似文献   

18.
Several hundred proteins have been resolved on two-dimensional gels of extracts of [35S]methionine-labeled adult Drosophila melanogaster. 27 of these polypeptides disappear from the gel pattern after feeding the K+ ionophore nonactin. These proteins have been identified as mitochondrial, since the two-dimensional gel pattern of extracts of isolated mitochondria correlates well with the pattern of the proteins missing from that of nonactin-treated flies. Nine new proteins also appear on the two-dimensional gels of the extracts from the nonactin-treated flies. Apparently, these nine proteins are precursors of the mature mitochondrial forms. These particular data support the concept that processing of many of the cytoplasmically synthesized mitochondrial proteins requires a specific membrane potential, and that some of these proteins are modified intramitochondrially. However, using [35S]methionine incorporation techniques, not all labeled polypeptides disappear from mitochondria during such treatment. Feeding similarly radiolabeled flies with chloramphenicol, an inhibitor of mitochondrial protein synthesis, results in the disappearance of only one protein from the gel pattern with the concurrent appearance of a ‘new’ high-molecular-weight polypeptide. Collectively, these data show that a specific group of [35S]methionine-labeled mitochondrial proteins can be identified by selective inhibition of mitochondrial function in whole cell protein maps of adult D. melanogaster.  相似文献   

19.
It is demonstrated that the strong fluorescence of the ejaculatory bulb of Drosophila melanogaster males is caused by the presence of pteridines. The pteridine composition in the bulb is affected by the mutations ry2 and ma-lF1 in which isoxanthopterin has also been detected. Our results show that the bulbs of wild-type and white-eyed mutant males possess the same pteridines. Some data suggest that the bulbal pteridines originate from the testis region. Partly on the basis of former histochemical findings it is suggested that in the bulbal cavity the pH is high favouring the fluorescent dihydro-states of the pteridines present. All these and additional literature data on the ejaculatory bulb are discussed in connection with various biological processes. Some internal larval structures in which pteridines play or might play a functional role were found to present autofluorescence.  相似文献   

20.
Insect cold tolerance varies at both the population and species levels. Carbohydrate cryoprotectants and membrane remodeling are two main mechanisms hypothesised to increase chilling tolerance in Drosophila melanogaster, as part of both long-term (i.e., evolutionary) change and rapid cold-hardening (RCH). We used cold-selected lines of D. melanogaster with and without a pre-exposure that induces RCH to test three hypotheses: (1) that increased cold tolerance would be associated with increased free glucose; (2) that increased cold tolerance would be associated with desaturation of membrane phospholipid fatty acids; and (3) that increased cold tolerance would be associated with a change in phospholipid head group composition. We used colourimetric assays to measure free glucose and a combination of thin layer chromatography-flame ionization detection and gas chromatography to measure membrane composition. We observed a consistent decrease in free glucose with RCH, and no relationship between free glucose and basal cold tolerance. Also, phospholipid head group ratios and fatty acid composition showed no change following an RCH treatment. Thus, we conclude that changes in free glucose and membrane composition are unlikely to be significant determinants of variation in cold tolerance of D. melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号