首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entomophthora leyteensis Villacarlos & Keller sp. nov., a species of Entomophthorales infecting the whitefly Tetraleurodes acaciae on Gliricidia sepium in the Philippines is described. Disease prevalence monitored weekly for 8 weeks indicated that the fungus could cause 8-31% infection within the whitefly population. Epizootics due to this fungus occurred in Inopacan, Leyte. Sampling live whitefly adults and dissecting them on glass slides for microscopic examination of fungal structures was found to give a better measure of prevalence than actual counts of infected insect cadavers. E. leyteensis is an important mortality factor for T. acaciae. Some speculations on the origin of the fungus are discussed here.  相似文献   

2.
3.
Neozygites floridana (Weiser & Muma) (Zygomycetes: Entomophthorales) has been reported infecting naturally at least 18 species of tetranychids worldwide. However, the host range of N. floridana is unknown. Epizootics caused by this pathogen to tetranychid populations indicate that N. floridana has the potential to be used as a biological control agent. However, the virulence and specificity of species and strains of Neozygites need to be assessed in the laboratory to reveal its potential as a biological control agent. N. floridana isolates are currently been investigated in Brazil as biological control agents against the tomato red mite, Tetranychus evansi Baker & Pritchard, and the two-spotted spider mite, Tetranychus urticae Koch. The pathogenicity of five strains of N. floridana obtained from T. urticae, T. evansi and T. ludeni Zacher was assessed against populations of Mononychellus tanajoa (Bondar), Schizotetranychus sacharum Flechtmann & Baker, Tetranychus abacae Baker & Pritchard and Tetranychus armipenis Flechtmann & Baker, in addition to the species from which the fungus was obtained. Mummified mites were placed on leaf discs of the host plant of each tetranychid to promote fungal sporulation, and after 24 h the mites were transferred to the leaf discs. Contamination, infection and mummification were evaluated daily for seven days after confinement. Each isolate was pathogenic to three or four out of the six spider mite species tested. However, except for isolate ESALQ1421, all isolates caused higher levels of infection and significant mummification only to the tetranychid species from which they were collected. None of the isolates was pathogenic to S. sacharum and only one isolate infected T. abacae. Alternative hosts may be important for N. floridana survival in tropical regions where resting spores are rarely found.  相似文献   

4.
Selected morphological and physiological characteristics of four Beauveria bassiana (Balsamo) Vuillemin isolates and one Metarhizium anisopliae (Metschnikoff) Sorokin isolate, which are highly pathogenic to Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), were determined. There were significant differences in conidial size, viability, spore production, speed of germination, relative hyphal growth, and temperature sensitivity. Spore viability after incubation for 24h at 20 degrees C ranged from 91.4 to 98.6% for the five isolates tested. Spore production on quarter-strength Sabouraud dextrose agar plus 0.25% (w/v) yeast extract after 10 days incubation at 20 degrees C ranged from 1.6x10(6) to 15.5x10(6)conidia/cm(2). One B. bassiana isolate (ARSEF 1394) produced significantly more conidia than the others. Spore germination was temperature-dependant for both B. bassiana and M. anisopliae. The time required for 50% germination (TG(50)) ranged from 25.0 to 30.9, 14.0 to 16.6, and 14.8 to 18.0h at 15, 22, and 28 degrees C, respectively. Only the M. anisopliae isolate (ARSEF 3540) had significant spore germination at 35 degrees C with a TG(50) of 11.8h. A destructive sampling method was used to measure the relative hyphal growth rate among isolates. Exposure to high temperature (40-50 degrees C) for 10min had a negative effect on conidial viability. The importance of these characteristics in selecting fungal isolates for management of L. lineolaris is discussed.  相似文献   

5.
Until now, five species of the subgenus Uroleucon (Uromelan) have been recognized in Korea. This is the first report of Uroleucon (Uromelan) adenophorae (Matsumura, 1918) occurring on Adenophora triphylla (Campanulaceae) in Gangwon-do, South Korea. Host plants are reviewed and an identification key to species is presented for six Uroleucon (Uromelan) species from the Korean Peninsula.  相似文献   

6.
Chytridiopsis typographiWeiser, 1954, the microsporidian pathogen of the spruce bark beetle, Ips typographus L. (Coleoptera: Scolytidae), has an early developmental period with plurinucleate mother cells, each of which produces a single bud. The globular bud is connected with the mother cell by a collar and the cellular constituents are pushed to the distant end of the bud. Both the mother cell and the bud continue to develop; the bud then separates from the mother cell and grows to produce a cell of the same type. Both cells then continue sporogonial development and produce sporophorous vesicles with 16-32 spores. The process of a single mother cell producing a single bud that grows to an identical stage is new in the development of C. typographi and has no analogy in other Microsporidia.  相似文献   

7.
Lavandula angustifolia is a well known herbal medicine with a variety of useful properties, including its acaricidal effect. This experiment was carried out to study the bioacaricidal activity of L. angustifolia essential oil (EO) against engorged Rhipicephalus (Boophilus) annulatus (Acari; Ixodidae) females. For this purpose six serial concentrations (0.5, 1.0, 2.0, 4.0, 6.0 and 8.0% w/v) of L. angustifolia EO were used. There was considerable mortality in concentrations more than 4.0% although there were no differences between 6.0 and 8.0% in all measured criteria. The mortality rate 24 h after inoculation was 73.26 and 100% in groups treated with 4.0 and 8.0% EO, respectively. Lavender EO also reduced tick egg weight in a concentration-dependent manner. The amount of eggs produced varied from 0.12 g (at 0.5% EO) to 0.00 g (at 8.0% EO) but did not differ statistically from the control. L. angustifolia EO caused 100% failure in egg laying at 6.0 and 8.0% whereas this value in the control group was zero. A positive correlation between L. angustifolia EO concentration and tick control, assessed by relative mortality rate and egg-laying weight, was observed by the EO LC/EC50, which, when calculated using the Probit test, was 2.76-fold higher than the control. Lavender is a promising acaricidal against R. (B.) annulatusin vitro.  相似文献   

8.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a longhorned beetle species native to Asia, has been introduced into several North American and European cities. Currently eradication and preventive measures are limited to identifying and destroying infested trees and protecting uninfested trees with trunk or soil-injections of the systemic insecticide imidacloprid. Because entomopathogenic fungi like Metarhizium brunneum Petch have been identified as virulent against these beetles we conducted several tests to determine the compatibility of the two agents in combination. Radial hyphal growth and the sporulation capacity of M. brunneum on Sabouraud dextrose agar with yeast were not significantly affected by the presence of imidacloprid. In a 2 × 3 factorial experiment investigating interactions between exposure to imidacloprid and M. brunneum we observed no effect of imidacloprid alone on beetle survival when beetles were given a single dose of 10 or 100 ppm compared to control insects. We observed a significant effect of exposure to M. brunneum, and a significant interaction between imidacloprid and M. brunneum representing a synergistic effect of dual treatment. Beetles exposed to the fungus alone lived significantly longer compared to insects treated with a single dose of 100 ppm imidacloprid (9.5 vs. 6.5 d). Consumption of striped maple twigs by beetles exposed to imidacloprid, across concentrations, was reduced 48% compared to control insects, where as consumption by M. brunneum-exposed beetles was reduced by 16% over the first 6-days of the test period. Beetles fed 100 ppm imidacloprid consumed 32% less over the first 3 d compared to beetles not exposed to imidacloprid and thereafter consumed as much as beetles not fed 100 ppm imidacloprid. M. brunneum-exposed beetles consumed significantly less food than control insects throughout the test period, and beetles treated with imidacloprid produced significantly fewer conidia compared to beetles not treated with imidacloprid.  相似文献   

9.
The predator beetle Rhizophagus grandis Gyll. (Coleoptera, Rhizophaginae) is one of the most important biological control agents, mass-bred and used to suppress populations of an important pest: the great spruce bark beetle, Dendroctonus micans. The achlorophyllous alga Helicosporidium sp. was first discovered in the pest. Later it was also found in the predator, but only in the adults. In this study, the pathogenic alga Helicosporidium sp. was discovered in larvae and early pupae of R. grandis for the first time. The morphological characteristics of the pathogenic alga were revealed by light and electron microscopy. Infection rates of Helicosporidium sp. in the larvae and pupae of R. grandis were 23.5% and 6.25%, respectively.  相似文献   

10.
Tetranychus evansi is an exotic pest of Solanaceous crops in Africa discovered in Zimbabwe in 1979. Two natural enemies, the predatory mite Phytoseiulus longipes and the fungal pathogen Neozygites floridana are important causes of mortality in T. evansi populations in Brazil. The first part of this study assessed the effects of N. floridana on predation and oviposition of P. longipes fed on N. floridana infected T. evansi and T. urticae. No N. floridana hyphal bodies were found in P. longipes after this feeding, demonstrating that N. floridana is not pathogenic to P. longipes and does not affect its oviposition. The second part of the study investigated the time spent on searching for and consuming of eggs on leaf discs with and without N. floridana capilliconidia. Both the searching and the feeding time on the first egg were similar on leaf discs with and without capilliconidia. When P. longipes was offered the choice of feeding on eggs on leaf discs with or without capilliconidia, the numbers of eggs consumed were not different. The only N. floridana effect observed on P. longipes was reduced egg predation. In addition, increased time spent grooming on leaf discs with capilliconidia was observed. P. longipes was efficient in removing most capilliconidia attached to the body through self-grooming behavior. This suggests that although the predator did not avoid areas with capilliconidia, it detected and removed most capilliconidia attached to the body. Increased grooming may account for the lower egg predation rates.  相似文献   

11.
The Asian citrus psyllid, Diaphorina citri Kuwayama, is an invasive pest that vectors citrus greening disease, which recently was detected in Florida. Mycosed adult D. citri were collected at four sites in central Florida between September 2005 and February 2006. Observation of the cadavers using scanning electron microscopy revealed that the pathogen had branched synnemata supporting monophiladic conidiogenous cells. A high-fidelity polymerase chain reaction (PCR) assay was used to amplify the 18S rRNA, 28S rRNA and beta-tubulin genes of the pathogen for phylogenetic analysis. The morphological and genetic data indicated that the pathogen was a novel isolate related to Hirsutella citriformis Speare. PCR assays using isolate-specific primers designed from the unique putative intron region of the beta-tubulin sequence distinguished the psyllid pathogen from five related Hirsutella species. The pathogen was maintained in vivo by exposing healthy D. citri to the synnemata borne on field-collected cadavers. Infected psyllids had an abundance of septate hyphal bodies in their hemolymph and exhibited behavioral symptoms of disease. In vitro cultures of the pathogen were slow-growing and produced synnemata similar to those found on mycosed D. citri. In laboratory bioassays, high levels of mortality were observed in D. citri that were exposed to the conidia-bearing synnemata produced in vivo and in vitro.  相似文献   

12.
Neozygites fresenii-infected Aphis gossypii cadavers, containing dormant hyphal bodies of N. fresenii, were stored in 4 ml glass vials at -14 degrees C in a standard consumer-type refrigerator/freezer for 1, 21, 30, 43, 51, and 68 months to determine the effect of storage on fungal survival. When the cadavers were removed from the freezer and placed in 25+/-1 degrees C, 100% relative humidity, and 12:12 (L:D) conditions, N. fresenii survival, as shown by fungal sporulation from the cadavers, was high at all storage periods. The average percentage of cadavers from which the fungus sporulated were 93, 47, 100, 100, 80, and 60% from 1, 21, 30, 43, 51, and 68 months storage periods, respectively. The number of primary conidia discharged from each sporulating cadaver was estimated using a scale of 1 (low, ca. 1000 primary conidia), 2 (medium, ca. 2000 primary conidia) and 3 (high, ca. 3000 primary conidia). The median scores for the number of primary conidia produced per sporulating cadaver were 3, 2, 3, 3, 2.5, and 1 for 1, 21, 30, 43, 51, and 68 months, respectively. Therefore, except for the longest storage period, most cadavers produced medium to high numbers of primary conidia. Mean germination of primary conidia produced from N. fresenii-infected-aphid cadavers from each time period varied significantly from 66.3 to 86.1% in the 21 and 43 months categories, respectively. Infectivity of capilliconidia, produced from frozen N. fresenii, to live healthy cotton aphids varied significantly from 16.7 to 68.7% from cadavers stored 68 months and 1 month, respectively. Overall N. fresenii survived well in dried frozen cotton aphid cadavers for up to 6 years with little reduction in sporulation, numbers of spores produced, germination of primary conidia, or infectivity.  相似文献   

13.
The precise mechanisms underlying Bacillus thuringiensis-mediated killing of pest insects are not clear. In some cases, death may be due to septicaemia caused by Bt and/or gut bacteria gaining access to the insect haemocoel. Since insects protect themselves from microbes using an array of cellular and humoral immune defences, we aimed to determine if a recombinant immunosuppressive wasp venom protein (rVPr1) could increase the susceptibility of two pest Lepidoptera (Lacanobia oleracea and Mamestra brassicae) to Bt. Bio-assays indicated that injection of 6 μl of rVPr1 into the haemocoel of both larvae caused similar levels of mortality (less than 38%). On the other hand, the LD30-40 of Bt for M. brassicae larvae was approximately 20 times higher than that for L. oleracea larvae. Furthermore, in bio-assays where larvae were injected with rVPr1, then fed Bt, a significant reduction in survival of larvae for both species occurred compared to each treatment on its own (P < 0.001); and for L. oleracea larvae, this effect was more than additive. The results are discussed within the context of insect immunity and protection against Bt.  相似文献   

14.
Ambrosia beetles (Coleoptera: Scolytinae) are associated with strictly entomochoric and mutualistic fungi. We studied the mycobiota associated with Scolytodes unipunctatus, ambrosia beetles that infest Cecropia trees in Central America. Isolates were characterized using morphology and rDNA sequences (ITS region, LSU, and SSU rDNA). Four species are described here: Raffaelea scolytodis sp. nov. (Ophiostomatales), Gondwanamyces scolytodis sp. nov., Custingophora cecropiae sp. nov., and Graphium sp. (Microascales). The genus Custingophora is emended to include Knoxdaviesia anamorphs of Gondwanamyces based on uniformity of DNA sequences and phenotype.  相似文献   

15.
The cassava green mite (CGM), Mononychellus tanajoa, a native of South America was accidentally introduced into Africa where it causes serious crop losses. The possibility of introducing classical biological agents from the native home of CGM into Africa was investigated. Thus, we conducted a series of laboratory assays of the native fungal pathogens, Neozygites tanajoae from Brazil and Neozygites floridana from Colombia and Brazil, and compared them with N. tanajoae isolates from Benin. Infectivity of both fungal species, was assayed against the twospotted spider mite, Tetranychus urticae, and against the red mite, Oligonychus gossypii. Pathogenicity against CGM and host range studies were conducted by transferring adult females of each mite species to leaf discs containing sporulated cadavers with a halo of conidia of each fungal isolate. All isolates caused some degree of infectivity to CGM. None of the isolates of N. floridana and N. tanajoae tested were pathogenic to O. gossypii, and only two isolates infected T. urticae. Most isolates from Brazil were highly virulent and infected only CGM. Sixteen N. tanajoae isolates caused more than 89% mortality and more than 62% of the CGM became mummified. A mummified CGM is characteristically a swollen, brown fungus-killed mite that has great potential to produce conidia. However, high mortality was not always associated with high mummification. The median mummification time ranged from 4.4 to 6.7 days. Five Brazilian isolates caused >75% mummification with a median mummification time <5 days. Isolates that cause high mummification in a short period of time would be more likely to cause epizootics and to establish in the new environment. Therefore, these isolates would be the best candidates for introduction to Africa.  相似文献   

16.
The tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae) was recently introduced in Africa and Europe, where there is an increasing interest in using natural enemies to control this pest on solanaceous crops. Two promising candidates for the control of T. evansi were identified in South America, the fungal pathogen, Neozygites floridana and the predatory mite Phytoseiulus longipes. In this study, population dynamics of T. evansi and its natural enemies together with the influence of environmental conditions on these organisms were evaluated during four crop cycles in the field and in a protected environment on nightshade and tomato plants with and without application of chemical pesticides. N. floridana was the only natural enemy found associated with T. evansi in the four crop cycles under protected environment but only in the last crop cycle in the field. In the treatments where the fungus appeared, reduction of mite populations was drastic. N. floridana appeared in tomato plants even when the population density of T. evansi was relatively low (less than 10 mites/3.14 cm2 of leaf area) and even at this low population density, the fungus maintained infection rates greater than 50%. The application of pesticides directly affected the fungus by delaying epizootic initiation and contributing to lower infection rates than unsprayed treatments. Rainfalls did not have an apparent impact on mite populations. These results indicate that the pathogenic fungus, N. floridana can play a significant role in the population dynamics of T. evansi, especially under protected environment, and has the potential to control this pest in classical biological control programs.  相似文献   

17.
18.
Plant architecture and phenotypic plasticity under natural conditions remain little known for many rhizomatous species. This study evaluates, in situ, the plastic responses of Alstroemeria aurea plants from three Patagonian populations to flower or flowering-shoot removal. The size and architecture of treated and untreated plants were assessed. Nutrient contents (N, P and K) were evaluated for rhizomes and roots developed in two successive years. Those plants that were deprived of their inflorescences developed, on average, a heavier rhizome than both control plants and plants from which flowering shoots had been removed. Neither of the two treatments applied altered the number of metamers or the branching pattern of the rhizomes. The contents of N, P and K were higher in rhizomes than in roots. In summer, nutrients were more concentrated in inflorescences and the new rhizome segment than in the rhizome segment developed in the previous year. The idea that fruiting failure in A. aurea promotes resource re-assignment from aerial shoots to rhizomes without altering the architecture of plants is supported. The development of the underground portion of aerial shoots in late summer-autumn allows A. aurea plants to take full advantage of short growth periods, but would impose a limit to plasticity.  相似文献   

19.
Hyaloscyphaceae is the largest family in Helotiales, Leotiomycetes. It is mainly characterized by minute apothecia with well-differentiated hairs, but its taxonomic delimitation and infrafamilial classification remain ambiguous. This study performed molecular phylogenetic analyses using multiple genes including the ITS-5.8S rDNA, the D1–D2 region of large subunit of rDNA, RNA polymerase II subunit 2, and the mitochondrial small subunit. The primary objective was to evaluate the phylogenetic utility of morphological characters traditionally used in the taxonomy of Hyaloscyphaceae through reassessment of the monophyly of this family and its genera. The phylogenetic analyses inferred Hyaloscyphaceae as being a heterogeneous assemblage of a diverse group of fungi and not supported as monophyletic. Among the three tribes of Hyaloscyphaceae only Lachneae formed a monophyletic lineage. The presence of hairs is rejected as a synapomorphy, since morphologically diversified hairs have originated independently during the evolution of Helotiales. The true- and false-subiculum in Arachnopezizeae are hypothesized to have evolved through different evolutionary processes; the true-subiculum is likely the product of a single evolutionary origin, while the false-subiculum is hypothesized to have originated multiple times. Since Hyaloscyphaceae sensu lato was not resolved as monophyletic, Hyaloscyphaceae sensu stricto is redefined and only applied to the genus Hyaloscypha.  相似文献   

20.
The complete mitochondrial genome of the sycamore lace bug, Corythucha ciliata, was sequenced in this study. It represents the first sequenced mitogenome of family Tingidae in Heteroptera. The mitogenome of C. ciliata is 15,257 bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a large non-coding region. Gene arrangement, nucleotide content, codon usage, and amino acid composition and asymmetry indicate a high degree of conservation with six other species of Cimicomorpha. The 13 PCGs initiated with ATN as the start codon and terminated with TAA, TA or T as stop codon. The evolutionary rate of each PCG was different, among which ATP8 showed the highest rate while ATP6 indicated the lowest rate. The 22 tRNAs genes apparently fold into a typical cloverleaf structure; however, the anticodon (TTC) of trnSer (AGN) differs from other Heteropteran insects. Secondary structure modeling of rRNA genes revealed similarity to other insects, except for two incomplete helices (H1648 and H2735) in lrRNA. The predicted secondary structure of lrRNA indicates 45 helices in six domains, whereas srRNA has 27 helices in three domains. Three potential stem–loops and two tandem repeats (–TCTAAT–) were identified in the A+T-rich region. Phylogenetic analysis indicated that C. ciliata is a sister group to other Heteroptera species based on analysis of the 13 PCGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号