首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like in all poikilothermic animals, higher temperatures increase developmental rate and activity in Calliphora vicina larvae. We therefore could expect temperature to have a persistent effect on the output of the feeding and crawling central pattern generators (CPGs). When confronted with a steep temperature gradient, larvae show evasive behavior after touching the substrate with the cephalic sense organs. Beside this reflex behavior the terminal- and dorsal organ might also mediate long term CPG modulation. Both organs were thermally stimulated while their response was recorded from the maxillary- or antennal nerve. The terminal organ showed a tonic response characteristic while the dorsal organ was not sensitive to temperature. Thermal stimulation of the terminal organ did not affect the ongoing patterns of fictive feeding or crawling, recorded from the antennal- or abdominal nerve respectively. A selective increase of the central nervous system (CNS) temperature accelerated the motor patterns of both feeding and crawling. We propose that temperature affects centrally generated behavior via two pathways: short term changes like thermotaxis are mediated by the terminal organ, while long term adaptations like increased feeding rate are caused by temperature sensitive neurons in the CNS which were recently shown to exist in Drosophila larvae.  相似文献   

2.
Previous studies suggest that afferents in the diaphragm participate in the reflex reduction in phrenic nerve efferent activation when the length of the diaphragm is increased by abdominal compression. The present study determined the response of tendon organ afferents in the diaphragm to increases in abdominal pressure. Five cats were anesthetized with thiopental sodium (60 mg/kg ip to induce, supplemented intravenously). Extracellular recordings from nine individual tendon organ afferents were made from right cervical dorsal root ganglia 5 and 6. Right crural electromyographic activity was recorded. The right extrathoracic phrenic nerve was isolated and stimulated to identify tendon organs on the basis of conduction velocity and response to twitch. The response to ramp-and-hold stretch of the diaphragm was used as an additional test to differentiate tendon organs from muscle spindles. The mean level of activity of the tendon organs during the 1st s of the inspiratory phase was 47 +/- 10 (SD) Hz. Abdominal compression was associated with a significant increase in the activity of these afferents to 61 +/- 11 Hz. Results indicate that increases in the activity of diaphragmatic tendon organs are associated with moderate increases in abdominal pressure and are likely the result of elevations in the active tension developed by the diaphragm. Combined with results from previous studies, it is possible that diaphragmatic tendon organs may play a role in the attenuation of respiratory muscle activation when abdominal pressure is increased.  相似文献   

3.
The fine structure and primary sensory projections of sensilla located in the labial-palp pit organ of the cotton bollworm Helicoverpa armigera (Insecta, Lepidoptera) are investigated by scanning electron and transmission electron microscopy combined with confocal laser scanning microscopy. The pit organ located on the third segment of the labial palp is about 300 μm deep with a 60-μm-wide opening, each structure containing about 1200 sensilla. Two sensillum types have been found, namely hair-shaped and club-shaped sensilla, located on the upper and lower half of the pit, respectively. Most sensilla possess a single dendrite. The dendrite housed by the club-shaped sensilla is often split into several branches or becomes lamellated in the outer segment. As reported previously, the sensory axons of the sensilla in the labial pit organ form a bundle entering the ipsilateral side of the subesophageal ganglion via the labial palp nerve and project to three distinct areas: the labial pit organ glomerulus in each antennal lobe, the subesophageal ganglion and the ventral nerve cord. In the antennal lobe, the labial pit organ glomerulus is innervated by sensory axons from the labial pit organ only; no antennal afferents target this unit. One neuron has been found extending fine processes into the subesophageal ganglion and innervating the labial palp via one branch passing at the base of the labial palp nerve. The soma of this assumed motor neuron is located in the ipsilateral cell body layer of the subesophageal ganglion. Our results provide valuable knowledge concerning the neural circuit encoding information about carbon dioxide and should stimulate further investigations directed at controlling pest species such as H. armigera.  相似文献   

4.
Mechanosensitive nociceptors with unmyelinated axons (C-fibers) were studied in a preparation of isolated skin and nerve from rat. Afferent discharges were recorded while the skin was mechanically stimulated using quantitative stretch (tension) and indentation (compression). The apparatus allowed for generating stimuli of equal magnitudes in both tension and compression. Stimulus-response functions were obtained for individual afferents relating discharge rate to tensile stress or compressive stress. A response threshold and maximal slope were obtained from each function. Thresholds did not differ significantly for compression and tension nor did the maximal slopes. We conclude that C-nociceptors are equally sensitive to tensile and compressive stress.  相似文献   

5.
Little is known about the reflex effect on airway caliber evoked by stimulation of phrenic afferents. Therefore, in chloralose-anesthetized, paralyzed dogs, we recorded airflow, airway pressure, arterial pressure, and heart rate while electrically stimulating a phrenic nerve. Total lung resistance was calculated breath by breath. The phrenic nerve was stimulated at 3, 5, 20, 70, 140, and 200 times motor threshold and the compound action potential was recorded. Stimulation of the phrenic nerve at three and five times threshold, which activated groups I, II, and a few group III fibers, had no effect on any of the variables measured. Stimulation at 20 times threshold, which activated many group III fibers and groups I and II fibers, reflexly decreased resistance. Stimulation at 70, 140, and 200 times threshold, which activated groups I-IV fibers, evoked progressively greater decreases in lung resistance. The reflex bronchodilation evoked by phrenic nerve stimulation was unaffected by propranolol or phentolamine but was abolished by atropine. We conclude that activation of groups III and IV phrenic nerve afferents reflexly decreased total lung resistance by withdrawing cholinergic tone to airway smooth muscle.  相似文献   

6.
We have exploited the segregation of motor and sensory axons into peripheral nerve sub-compartments to examine spinal reflex interactions in anaesthetized stingrays. Single, supra-maximal electrical stimuli delivered to segmental sensory nerves elicited compound action potentials in the motor nerves of the stimulated segment and in rostral and caudal segmental motor nerves. Compound action potentials elicited in segmental motor nerves by single stimuli delivered to sensory nerves were increased severalfold by prior stimulation of adjacent sensory nerves. This facilitation of the segmental reflex produced by intense conditioning stimuli decreased as it was applied to more remote segments, to approximately the same degree in up to seven segments in the rostral and caudal direction. In contrast, an asymmetric response was revealed when test and conditioning stimuli were delivered to different nerves, neither of which was of the same segment as the recorded motor nerve: in this configuration, conditioning volleys generally inhibited the responses of motoneurons to stimuli delivered to more caudally located sensory nerves. This suggests that circuitry subserving trans-segmental interactions between spinal afferents is present in stingrays and that interneuronal connections attenuate the influence that subsequent activity in caudal primary afferents can have on the motor elements.  相似文献   

7.
In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified must underlie the transduction of noxious and/or innocuous stimuli from the large intestine.  相似文献   

8.
Repetitive mechanical stimulation causes depression of excitability in isolated Pacinian corpuscles: the mechanical threshold of the sense organ for producing nerve impulses increases progressively with time of repetitive stimulation. The effect is completely reversible; it can be elicited with repetitive stimuli of less than threshold strength. Within certain limits, the depression increases as a function of strength and frequency of the repetitive stimuli.  相似文献   

9.
The labral pilifers and the labial palps form ultrasound-sensitive hearing organs in species of two distantly related hawkmoth subtribes, the Choerocampina and the Acherontiina. Biomechanical examination now reveals that their ears represent different types of hearing organs. In hearing species of both subtribes, the labral pilifer picks up vibrations from specialized sound-receiving structures of the labial palp that are absent in non-hearing species. In Choerocampina, a thin area of cuticle serves as an auditory tympanum, whereas overlapping scales functionally replace a tympanum in Acherontiina that can hear. The tympanum of Choerocampina and the scale-plate of Acherontiina both vibrate maximally in response to ultrasonic, behaviourally relevant sounds, with the vibrations of the tympanum exceeding those of the scale plate by ca. 15 dB. This amplitude difference, however, is not reflected in the vibrations of the pilifers and the neural auditory sensitivity is similar in hearing species of both subtribes. Accordingly, morphologically different - tympanal and atympanal - but functionally equivalent hearing organs evolved independently and in parallel within a single family of moths.  相似文献   

10.
A. Kemp 《Tissue & cell》2017,49(1):45-55
Three systems, two sensory and one protective, are present in the skin of the living Australian lungfish, Neoceratodus forsteri, and in fossil lungfish, and the arrangement and innervation of the sense organs is peculiar to lungfish. Peripheral branches of nerves that innervate the sense organs are slender and unprotected, and form before any skeletal structures appear. When the olfactory capsule develops, it traps some of the anterior branches of cranial nerve V, which emerged from the chondrocranium from the lateral sphenotic foramen. Cranial nerve I innervates the olfactory organ enclosed within the olfactory capsule and cranial nerve II innervates the eye. Cranial nerve V innervates the sense organs of the snout and upper lip, and, in conjunction with nerve IX and X, the sense organs of the posterior and lateral head. Cranial nerve VII is primarily a motor nerve, and a single branch innervates sense organs in the mandible. There are no connections between nerves V and VII, although both emerge from the brain close to each other. The third associated system consists of lymphatic vessels covered by an extracellular matrix of collagen, mineralised as tubules in fossils. Innervation of the sensory organs is separate from the lymphatic system and from the tubule system of fossil lungfish.  相似文献   

11.
The modulatory action of DL-octopamine on the multicellular femoral chordotonal organ (fCO) of the stick insect Cuniculina impigra was examined using extracellular recordings from the fCO nerve and intracellular recordings from single sensory neurons. To determine the octopaminergic effect on position, velocity and/or acceleration sensitivity of mechanoreceptors direct mechanical stimulations with defined parameters were applied to the fCO apodeme. The spontaneous activity in the fCO nerve was enhanced in a dose-dependent manner by octopamine (threshold at 5 × 10?7 M). This was based on enhanced activity of position sensitive neurons as the fCO activity for all position stimuli was shifted to higher values. Intracellular recordings of single sensory cells showed that velocity-sensitivity of single sensory cells was not altered by octopamine. Similarly, the response of fCO afferents to ramp-and-hold stimuli revealed that acceleration sensitivity was unaffected by octopamine. The observed alterations in the fCO activity indicate that responses to static stimuli are enhanced while responses to motion stimuli are not affected by octopamine. These findings suggest that the octopaminergic modulation of the fCO may affect the animals' posture and those leg movements that rely on position information.  相似文献   

12.
  1. Sensory axons from crab (Carcinus maenas) scaphognathites enter the thoracic ganglion primarily via the LNb branch of the levator nerve. The LNa branch of the levator nerve and the depressor nerve each contain relatively few sensory axons.
  2. Acutely deafferented ventilatory central pattern generators show a free running burst rate which is lower than that observed in intact crabs. Electrical stimulation of the levator nerve, or of its LNb branch, increases the burst rate in a frequency dependent manner. Stimulation at high enough intensity to recruit afferents will restart a paused motor rhythm. Stimulation of the levator nerve with short pulse trains phase resets and can entrain the rhythm.
  3. In addition to increasing the burst rate, LNb stimulation also causes a progressive elimination of motor neurons from the bursts as the stimulating frequency increases, probably due to depolarization of the 3 oval organ ‘giant’ afferent axons in this branch. Intracellular depolarization of single oval organ afferents will also inhibit some motor neurons as well as slow or stop the rhythm.
  4. Continuous stimulation of the depressor nerve does not affect the ganglionic burst rate and this nerve contains only a few small diameter afferent axons; however, brief trains of stimuli can reset the rhythm in a phase-dependent manner.
  相似文献   

13.
Muscular tension and sensory activity in the flexor apodeme sensory nerve were recorded during stimulation of single motor afferents innervating the M‐C flexor. Muscular tension and unitary sensory activity both varied, depending upon the motor fiber stimulated. Differences in the abililty of individual motor fibers to elicit sensory activity were only partially accounted for by differences in tension development. Some tension afferent units were more readily excited by a muscular contraction elicited by one motor axon than they were by another, even when the tension elicited by the more effective motor fiber was less than that evoked by the less effective efferent.  相似文献   

14.
The present study addresses the question as to how the motor neurons involved in feeding in Drosophila melanogaster Meigen (Diptera : Drosophilidae) are organized. The motor neurons have been visualized both by Golgi-silver impregnation and by intramuscular injection of horseradish peroxidase, and analyzed in light of the existing information on taste sensory system and the feeding behaviour. The motor neurons have been broadly classified into the following types: labial nerve motor neurons, pharyngeal nerve motor neurons, and accessory pharyngeal nerve motor neurons, depending on the nerve through which their axons exit. The arborization of all the motor neurons is confined to the suboesophageal ganglion (SOG). All of them have predominantly ipsilateral and some contralateral arborizations. Their dendrites predominantly occupy the ventral region of the neuropil of the SOG and partially overlap the taste sensory projections, thereby providing an opportunity for interaction with the taste sensory input. The pharyngeal motor neurons arborize more extensively in the ventral tritocerebram, anteroventral. and mid-ventral neuropil, whereas the dendritic fields of labial motor neurons are confined to the mid-ventral neuropil. There is a functional segregation in motor neuron organization: cibarial muscles involved in sucking are innervated by pharyngeal motor neurons, while the proboscis muscles involved in positioning, of the proboscis are innervated by labial motor neurons. We have also observed projections of the stomodaeal nerve in the tritocerebrum.  相似文献   

15.
Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice.  相似文献   

16.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears.The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

17.
Amphids, and the cephalic and labial papillae of Meloidogyne incognita males were examined in detail by electron microscopy. Each amphid basically consists of an amphidial gland, a nerve bundle and an amphidial duct. The gland is a broad microvillous organ with a narrow anterior process, which is closely associated with the amphidial duct. A posterior process of the gland contains secretory organelles and proceeds along the esophagus with the lateral cephalic nerve bundle. The nerve bundle penetrates the broad portion of the gland and, subsequently, individual nerve processes (dendrites) separate from one another, thus forming the sensilla pouch which is enveloped by the gland. Anterior to the pouch, the dendrites converge as they enter and eventually terminate in the amphidial duct. The external opening of the duct is a broad slit which separates the cheek, the outermost part of the lateral lip, from the remainder of the lip region. M. incognita males have six inner labial papillae and four outer cephalic papillae which are each innervated by two and one cilia, respectively. In labial papillae, the cilia appear to terminate at the base of a pore opening, whereas in cephalic papillae each cilium terminates beneath the labial cuticle.  相似文献   

18.
The pattern of lateral-line afferents in urodeles   总被引:2,自引:0,他引:2  
Summary The organization of posterior and anterior afferents of the lateralline system was studied in several species of urodeles by means of transganglionic transport of horseradish peroxidase. The afferents of each lateral-line nerve form distinct fascicles in the medullary alar plate. Each of the two branches of the anterior lateral-line nerve is organized in two long and one short fascicles. The posterior lateral-line afferents form only two long fascicles. Each ordinary neuromast is supplied by only two afferents, which run in the two ventral medullary fiber bundles. It is suggested that afferents to hair cells displaying one type of polarity form together one bundle, but those contacting hair cells polarized in the opposite way form the second ventral bundle of one lateral-line branch. Thus, the lateral-line afferents may be organized in a directotopic fashion.The short dorsal fascicle formed only by the anterior lateral-line afferents receives fibers exclusively from small pit organs. Each pit organ is supplied by only one afferent. Anatomically, these pit organs resemble in many respects the electroreceptive ampullary organs of certain fish.Neurons labeled retrogradely via the anterior lateral-line nerve afferents have been attributed to the nervus trigeminus or facialis. In addition to the posterior lateral-line afferents, only few centrifugally projecting neurons were labeled. These neurons are discussed as efferents to the posterior lateral-line neuromasts.  相似文献   

19.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears. The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

20.
The femoral chordotonal organ in orthopterans signals proprioceptive sensory information concerning the femur-tibia joint to the central nervous system. In the stick insect, 80 out of 500 afferents sense tibial position, velocity, or acceleration. It has been assumed that the other sensory cells in the chordotonal organ would serve as vibration detectors. Extracellular recordings from the femoral chordotonal organ nerve in fact revealed a sensitivity of the sense organ for vibrations with frequencies ranging from 10 Hz to 4 kHz, with a maximum sensitivity between 200 and 800 Hz. Single vibration-sensitive afferents responded to the same range of frequencies. Their spike activity depended on acceleration amplitude and displacement amplitude of the vibration stimulus. Additionally, 80% of the vibration-sensitive afferents received indirect presynaptic inputs from themselves or from other afferents of the femoral chordotonal organ, the amplitude of which depended on stimulus frequency and displacement amplitude. They were associated with a decrease of input resistance in the afferent terminal. From the present investigation we conclude that the femoral chordotonal organ of the stick insect is a bifunctional sensory organ that, on the one hand, measures position and movement of the tibia and, on the other hand, detects vibration of the tibia. Accepted: 6 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号