首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.  相似文献   

2.
The ventral nerve cord (VNC) of the Drosophila embryo is derived from neuroblasts (NBs). NBs divide in a stem cell lineage to generate a series of ganglion mother cells (GMCs), each of which divides once to produce a pair of neurons or glial cells. One of the NB genes, castor (cas), is expressed in a subset of NBs and has never been identified in neurons and the peripheral nervous system; cas plays a role in axonogenesis. But its limited expression along the dorsal-ventral axis within the central nervous system has not been investigated yet. In the present study, we examined the expression patterns of both genes using confocal microscopy to determine the effects of repo mutation on cas expression. Cas was mainly expressed in layers different from repo-expressed layers during early embryogenesis: repo was expressed mostly from deep to mid layers, while cas, from mid to superficial layers. Loss-of-function of repo did not result in an ectopic expression of cas, but rather, a scattering of cas-expressing cells. However, repo gain-of-function mutation caused repression of cas. In addition, repo-expressing cells seemed to block the migration of cas-expressing cells.  相似文献   

3.
Megagametogenesis, the development of a megaspore into an embryo sac, has been identified in the seagrass Halophila johnsonii, a threatened species with no known sexual reproduction or seeds. Megagametogenesis in H. johnsonii was compared with megagametophyte development in Halophila decipiens, a related species known to readily produce viable seeds. In both species, ovules were structurally similar, megaspore mother cells were seen in premeiotic ovules, and linear tetrads and megagametophytes with two to eight nuclei were present in postmeiotic ovules. However, H. decipiens postmeiotic ovules had a chalazal pouch that was absent in the postmeiotic ovules of H. johnsonii. Late-stage H. decipiens ovules also contained embryos, indicating that they had been fertilized, whereas all late-stage H. johnsonii ovules were degrading and showed no signs of fertilization. These observations suggest that meiosis does occur in H. johnsonii megasporocytes, leading to the formation of viable megagametophytes and egg cells that could be fertilized if pollination occurred. Thus, the lack of seed set is due to a lack of pollination rather than any loss of capacity to produce seeds in this species.  相似文献   

4.
5.
Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller “incisor field” forms in Pax9+/−;Msx1+/− mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia.  相似文献   

6.
The product of the Msx1 gene is a potent inhibitor of muscle differentiation. Msx1 is expressed in muscle precursor cells of the limb bud that also express Pax3. It is thought that Msx1 may facilitate distal migration by delaying myogenesis in these cells. Despite the role played by Msx1 in inhibiting muscle differentiation, nothing is known of the mechanisms that support the expression of the Msx1 gene within limb bud muscle precursor cells. In the present study we have used a combination of comparative genomics, mouse transgenic analysis, in situ hybridisation and immunohistochemistry to identify a highly conserved and tissue-specific regulatory sub-domain within the previously characterised Msx1 gene proximal enhancer element that supports the expression of the Msx1 gene in Pax3-expressing mouse limb pre-muscle masses. Furthermore, using a combination of in situ hybridisation, in vivo ChIP assay and transgenic explant culture analysis we provide evidence that Msx1 expression in limb bud muscle precursor cells is dependent on the canonical Wnt/TCF signalling pathway that is important in muscle shape formation. The results of these studies provide evidence of a mechanistic link between the Wnt/TCF and the Msx1/Pax3/MyoD pathways within limb bud muscle precursor cells.  相似文献   

7.
Lee JM  Kim JY  Cho KW  Lee MJ  Cho SW  Kwak S  Cai J  Jung HS 《Developmental biology》2008,314(2):341-350
Various cellular and molecular events underlie the elevation and fusion of the developing palate that occurs during embryonic development. This includes convergent extension, where the medial edge epithelium is intercalated into the midline epithelial seam. We examined the expression patterns of Wnt11 and Fgfr1b - which are believed to be key factors in convergent extension - in mouse palate development. Wnt-11 overexpression and beads soaked in SU5402 (an Fgfr1 inhibitor) were employed in in vitro organ cultures. The results suggested that interactions between Wnt11 and Fgfr1b are important in modulating cellular events such as cell proliferation for growth and apoptosis for fusion. Moreover, the Wnt11 siRNA results showed that Wnt11-induced apoptosis was necessary for palatal fusion. In summary, Fgfr1b induces cell proliferation in the developing palate mesenchyme so that the palate grows and contacts each palatal shelf, with negative feedback of Fgfs triggered by excessive cell proliferation then inhibiting the expression of Fgfr1b and activating the expression of Wnt11 to fuse each palate by activating apoptosis.  相似文献   

8.
Schistosomiasis is a serious parasitic zoonosis caused by blood-dwelling flukes of the genus Schistosoma. Understanding functions of genes and proteins of this parasite is important for uncovering this pathogen's complex biology, which will provide valuable information to design new strategies for schistosomiasis control. Effective applications of molecular tools reported to investigate schistosome gene function, such as inhibitor studies and transgenesis, rely on the developments of in vitro cultivation system of this parasite and cells. Besides the in vitro culture studies dealing with Schistosoma mansoni, there are also numerous excellent studies about the in vitro cultivation of Schistosoma japonicum, which were performed by Chinese researchers and published in Chinese journals. Nearly every stage of the life-cycle of S. japonicum, including miracidia, mother sporocysts, cercariae, schistosomula, and egg-laying adult worms, was employed for developing in vitro cultivation methods, being accompanied by the introduction of several media and supplements that helped to improve culture conditions. It was not only possible to generate mother sporocysts from miracidia in vitro, but also to obtain adult worms from cercariae through in vitro cultivation. The main obstacles to complete the life cycle of S. japonicum in the lab are the transition from mother sporocysts to cercariae, and the production of fertilized and completely developed eggs by adult worms generated in vitro. With regard to cells from S. japonicum, besides established isolation protocols and morphological observations, media optimizations were conducted by using different chemical reagents, biological supplements and physical treatment. Among these, mutagens like N-methyl-N-nitro-N-nitrosoguanidine and the addition of extracellular matrix were found to be able to induce mitogenic activities. Although enzyme activities or the level of silver-stained nucleolar region associated protein in cultured cells indicated still suboptimal conditions, the achievements made point to the possibility of reaching the aim of establishing cell lines for S. japonicum. Both the improvements of the in vitro culture of larval and adult worms of S. japonicum as well as the access of cells of this parasite provide excellent advances for research on this important parasite in the future.  相似文献   

9.
In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues.Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.  相似文献   

10.

Background and Aims

Conifers are characterized by the paucity of axillary buds which in dicotyledonous trees usually occur at every node. To compensate, conifers also produce ‘axillary meristems’, which may be stimulated to late development. In juvenile material of Wollemia nobilis (Araucariaceae: Massart''s model) first-order (plagiotropic) branches lack both axillary buds and, seemingly, axillary meristems. This contrasts with orthotropic (trunk) axes, which produce branches, either within the terminal bud or as reiterated orthotropic axes originating from axillary meristems. However, plagiotropic axes do produce branches if they are decapitated. This study investigated how this can occur if axillary meristems are not the source.

Methods

The terminal buds of a series of plagiotropic branches on juvenile trees were decapitated in order to generate axillary shoots. Shoots were culled at about weekly intervals to obtain stages in lateral shoot development. Serial sections were cut with a sliding microtome from the distal end of each sample and scanned sequentially for evidence of axillary meristems and early bud development.

Key Results

Anatomical search produced no clear evidence of pre-existing axillary meristems but did reveal stages of bud initiation. Buds were initiated in a group of small starch-rich cortical cells. Further development involved de-differentiation of these small cells and the development of contrasting outer and inner regions. The outer part becomes meristematic and organizes the apex of the new branch. The inner part develops a callus-like tissue of vacuolated cells within which vascular cambia are developed. This kind of insertion of a branch on the parent axis seems not to have been described before.

Conclusions

Axillary meristems in Wollemia characterize the leaf axils of trunk axes so that the origin of reiterated shoots is clear. Plagiotropic axes seemingly lack axillary meristems but still produce axillary branches by distinctive developmental processes. These observations demonstrate limited understanding of branch initiation in trees generally.  相似文献   

11.
The prespore-specific activation of sigma factor SigF (σF) in Bacillus subtilis has been explained mainly by two factors, i.e., the transient genetic asymmetry and the volume difference between the mother cell and the prespore. Here, we systematically surveyed the effect of these two factors on sporulation using a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). Considering the fact that the transient genetic asymmetry and the volume difference in sporulation of B. subtilis finally bring about the concentration difference in two proteins SpoIIAB (AB) and SpoIIAA (AA) between the mother cell and the prespore, we have surveyed the effect of AB and AA concentration on the prespore-specific activation of σF occurring in the early stage of sporulation. Our results show that the prespore-specific activation of σF could be governed by the ratio of AA to AB rather than their concentrations themselves. Our model also suggests that B. subtilis could maximize the ratio of AA to AB in the prespore and minimize it in the mother cell by employing both the transient genetic asymmetry and the volume difference simultaneously. This might give a good explanation to the co-occurrence of the transient asymmetry and the volume difference during sporulation of B. subtilis. In addition, we suggest for the first time that the σF activation in the prespore might be switched off by the decrease in the ratio of AA to AB after the transient genetic asymmetry is to an end by completion of DNA translocation into the prespore.  相似文献   

12.
13.
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell–cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at ‘tricellular junctions’—specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.  相似文献   

14.
Dynamic thermal time model of cold hardiness for dormant grapevine buds   总被引:1,自引:0,他引:1  

Background and Aims

Grapevine (Vitis spp.) cold hardiness varies dynamically throughout the dormant season, primarily in response to changes in temperature. The development and possible uses of a discrete-dynamic model of bud cold hardiness for three Vitis genotypes are described.

Methods

Iterative methods were used to optimize and evaluate model parameters by minimizing the root mean square error between observed and predicted bud hardiness, using up to 22 years of low-temperature exotherm data. Three grape cultivars were studied: Cabernet Sauvignon, Chardonnay (both V. vinifera) and Concord (V. labruscana). The model uses time steps of 1 d along with the measured daily mean air temperature to calculate the change in bud hardiness, which is then added to the hardiness from the previous day. Cultivar-dependent thermal time thresholds determine whether buds acclimate (gain hardiness) or deacclimate (lose hardiness).

Key Results

The parameterized model predicted bud hardiness for Cabernet Sauvignon and Chardonnay with an r2 = 0·89 and for Concord with an r2 = 0·82. Thermal time thresholds and (de-)acclimation rates changed between the early and late dormant season and were cultivar dependent but independent of each other. The timing of these changes was also unique for each cultivar. Concord achieved the greatest mid-winter hardiness but had the highest deacclimation rate, which resulted in rapid loss of hardiness in spring. Cabernet Sauvignon was least hardy, yet maintained its hardiness latest as a result of late transition to eco-dormancy, a high threshold temperature required to induce deacclimation and a low deacclimation rate.

Conclusions

A robust model of grapevine bud cold hardiness was developed that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model parameters that produce the best fit also permit insight into dynamic differences in hardiness among genotypes.  相似文献   

15.
The neurogenic gene Drosophilabig brain (bib) has a high sequence homology to aquaporin-4. However, its cellular functions in Drosophila neurogenesis have remained elusive. Here we investigated cell adhesion, and the ion and water permeability of Bib. The adhesive function was examined by a cell aggregation assay using L cells. Bib-transfected L cells formed aggregated clusters, while control-L cells remained as a single cell suspension. Ion permeation was not confirmed in L cells stably expressing Bib. When expressed in COS7 cells, Bib exhibited limited water permeability. This newly found cell adhesive function of Bib may be important for Drosophila neurogenesis.  相似文献   

16.
The fission yeast Schizosaccharomyces pombe divides symmetrically using a medial F-actin– based contractile ring to produce equal-sized daughter cells. Mutants defective in two previously described genes, mid1 and pom1, frequently divide asymmetrically. Here we present the identification of three new temperature-sensitive mutants defective in localization of the division plane. All three mutants have mutations in the polo kinase gene, plo1, and show defects very similar to those of mid1 mutants in both the placement and organization of the medial ring. In both cases, ring formation is frequently initiated near the cell poles, indicating that Mid1p and Plo1p function in recruiting medial ring components to the cell center. It has been reported previously that during mitosis Mid1p becomes hyperphosphorylated and relocates from the nucleus to a medial ring. Here we show that Mid1p first forms a diffuse cortical band during spindle formation and then coalesces into a ring before anaphase. Plo1p is required for Mid1p to exit the nucleus and form a ring, and Pom1p is required for proper placement of the Mid1p ring. Upon overexpression of Plo1p, Mid1p exits the nucleus prematurely and displays a reduced mobility on gels similar to that of the hyperphosphorylated form observed previously in mitotic cells. Genetic and two-hybrid analyses suggest that Plo1p and Mid1p act in a common pathway distinct from that involving Pom1p. Plo1p localizes to the spindle pole bodies and spindles of mitotic cells and also to the medial ring at the time of its formation. Taken together, the data indicate that Plo1p plays a role in the positioning of division sites by regulating Mid1p. Given its previously known functions in mitosis and the timing of cytokinesis, Plo1p is thus implicated as a key molecule in the spatial and temporal coordination of cytokinesis with mitosis.  相似文献   

17.
Neural crest-derived pigment cell development has been used extensively to study cell fate specification, migration, proliferation, survival and differentiation. Many of the genes and regulatory mechanisms required for pigment cell development are conserved across vertebrates. The zebrafish mutant colgate (col)/histone deacetylase1 (hdac1) has reduced numbers, delayed differentiation and decreased migration of neural crest-derived melanophores and their precursors. In hdac1col mutants normal numbers of premigratory neural crest cells are induced. Later, while there is only a slight reduction in the number of neural crest cells in hdac1col mutants, there is a severe reduction in the number of mitfa-positive melanoblasts suggesting that hdac1 is required for melanoblast specification. Concomitantly, there is a significant increase in and prolonged expression of foxd3 in neural crest cells in hdac1col mutants. We found that partially reducing Foxd3 expression in hdac1col mutants rescues mitfa expression and the melanophore defects in hdac1col mutants. Furthermore, we demonstrate the ability of Foxd3 to physically interact at the mitfa promoter. Because mitfa is required for melanoblast specification and development, our results suggest that hdac1 is normally required to suppress neural crest foxd3 expression thus de-repressing mitfa resulting in melanogenesis by a subset of neural crest-derived cells.  相似文献   

18.
Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI+] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI+] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.  相似文献   

19.
We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization.  相似文献   

20.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号