首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of the present study was to compare ultrastructure in the midguts of larvae of the Hessian fly, Mayetiola destructor (Say), under different feeding regimens. Larvae were either fed on Hessian fly-resistant or -susceptible wheat, and each group was compared to starved larvae. Within 3 h of larval Hessian fly feeding on resistant wheat, midgut microvilli were disrupted, and after 6 h, microvilli were absent. The disruption in microvilli in larvae feeding on resistant wheat were similar to those reported for midgut microvilli of European corn borer, Ostrinia nubilasis (Hubner), larvae fed a diet containing wheat germ agglutinin. Results from the present ultrastructural study, coupled with previous studies documenting expression of genes encoding lectin and lectin-like proteins is rapidly up-regulated in resistant wheat to larval Hessian fly, are indications that the midgut is a target of plant resistance compounds. In addition, the midgut of the larval Hessian fly is apparently unique among other dipterans in that no peritrophic membrane was observed. Ultrastructural changes in the midgut are discussed from the prospective of their potential affects on the gut physiology of Hessian fly larvae and the mechanism of antibiosis in the resistance of wheat to Hessian fly attack.  相似文献   

2.
A group of related genes has been isolated and characterized from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Members in this group appear to encode proteins with secretary signal peptides at the N-terminals. The mature putative proteins are small, acidic proteins with calculated molecular masses of 14.5 to 15.3 kDa, and isoelectric points from 4.56 to 4.88. Northern blot analysis revealed that these genes are expressed predominantly in the gut of Hessian fly larvae and pupae. Two related genes, GIOK1 and GIOK2, were isolated as tandem repeats. Both genes contain three exons and two introns. The intron/exon boundaries were conserved in terms of amino acid encoding, suggesting that they arose by gene duplication. The fact that the frequency of this group of clones in a gut cDNA library higher than that of total cDNA clones encoding digestive enzymes suggested that this group of proteins may perform an important function in the gut physiology of this insect. However, the exact functions of these proteins are as yet known since no sequence similarity could be identified between these proteins and any known sequences in public databases using standard methods.  相似文献   

3.
4.
5.
Resistance genes (R genes) are an important part of the plant's immune system. Among insects, the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), larva is the target of the greatest number of characterized R genes (H1-H32). The biochemical/molecular mechanism of R gene resistance to Hessian fly is not well understood. In the absence of an effective R gene, larvae caused extensive growth deficits (> 30 cm) in wheat seedlings. In the presence of one of three effective R genes, H6, H9, or H13, larvae caused small growth deficits (approximately 3-4 cm) in two leaves (third and fourth) that were actively growing during the first days of larval attack. After larvae died on R gene plants, the fifth leaf and tiller leaves exhibited small increases in growth (2-4 cm). Growth responses of susceptible and resistant plants diverged at a time when Hessian fly larvae were establishing a nutritive gall tissue at feeding sites. The results of this study support the hypothesis that R gene resistance cannot prevent initial larval attack, but, by stopping the formation of the larval gall, it prevents the most serious consequences of larval attack.  相似文献   

6.
7.
Genetic similarities between plant interactions with microbial pathogens and wheat interactions with Hessian fly larvae prompted us to investigate defense and counterdefense mechanisms. Plant oxidative burst, a rapid increase in the levels of active oxygen species (AOS) within the initial 24 h of an interaction with pathogens, commonly is associated with defenses that are triggered by gene-for-gene recognition events similar to those involving wheat and Hessian fly larvae. RNAs encoded by Hessian fly superoxide dismutase (SOD) and catalase (CAT) genes, involved in detoxification of AOS, increased in first-instar larvae during both compatible and incompatible interactions. However, mRNA levels of a wheat NADPH oxidase (NOX) gene that generates superoxide (O2-) did not increase. In addition, inhibiting wheat NOX enzyme with diphenyleneiodonium did not result in increased survival of avirulent larvae. However, nitro blue tetrazolium staining indicated that basal levels of O2- are present in both uninfested and infested wheat tissue. mRNA encoded by wheat genes involved in detoxification of the cellular environment, SOD, CAT, and glutathione-S-transferase did not increase in abundance. Histochemical staining with 3,3-diaminobenzidine revealed no increases in wheat hydrogen peroxide (H2O2) during infestation that were correlated with the changes in larval SOD and CAT mRNA. However, treatment with 2',7'-dichlorofluorescin demonstrated the presence of basal levels of H2O2 in the elongation zone of both infested and uninfested plants. The accumulation of a wheat flavanone 3-hydroxylase mRNA did show some parallels with larval gene mRNA profiles. These results suggested that larvae encounter stresses imposed by mechanisms other than an oxidative burst in wheat seedlings.  相似文献   

8.
【目的】挖掘梨小食心虫Grapholita molesta幼虫中肠中高表达消化酶和解毒酶基因,为今后研究以肠道为靶标的新型农药和转基因作物提供理论依据。【方法】基于梨小食心虫4龄幼虫中肠转录组高通量测序数据的FPKM值,筛选高表达基因,进行GO功能注释和KEGG通路富集分析,并使用BLAST软件进行比对筛选高表达的消化酶和解毒酶基因,利用MEGA对这些高表达的消化酶和解毒酶及其他鳞翅目昆虫的同源蛋白进行系统发育分析。利用qRT-PCR技术对梨小食心虫幼虫不同龄期中肠中的高表达代表性消化酶和解毒酶基因表达量进行定量分析和验证。【结果】在GO数据库中注释了103 677个在梨小食心虫4龄幼虫中肠中高表达基因,包括细胞组分、分子功能和生物学进程三大类功能共41个分支。KEGG通路分析表明,10 846个高表达基因参与了5类生化代谢通路。筛选到具有完整开放阅读框的消化酶基因17个[5个胰蛋白酶(trypsin, TRY)基因、3个氨肽酶(aminopeptidase, APN)基因和9个羧肽酶(carboxypeptidase, CP)基因]和解毒酶基因32个[11个谷胱甘肽S-转移酶(glu...  相似文献   

9.
10.
Fifteen unique cDNA clones encoding trypsin- or chymotrypsin-like proteins were cloned and characterized from a gut cDNA library derived from Hessian fly [Mayetiola destructor (Say)] larvae. Based on sequence similarities, the cDNAs were sorted into five gene groups, which were named MDP1 to MDP5. Two of the gene groups, MDP1 and MDP2, encoded chymotrypsin-like proteins; the other three encoded putative trypsins. All deduced proteins have conserved His(87), Asp(136), and Ser(241) residues for the catalytic triad and three pairs of cysteine residues for disulfide bridge configurations. The substrate specificity determination residue at position 235 was also conserved in the putative trypsins and chymotrypsins. In addition, all the deduced protein precursors had a typical secretion signal peptide and activation peptide. Northern blot analysis revealed that all these gene groups were exclusively expressed in the larval stage. The expression profiles for each gene group differed significantly in different ages of the larva, as well as in different tissues. Protease activity analysis of gut extract, using specific inhibitors, demonstrated that serine proteases were the major digestive enzymes in the gut of M. destructor larvae. Serine protease inhibitors inhibited as much as 90% proteolytic activities of gut extract, whereas inhibitors specific to other proteases, including cysteine proteases, aspartic proteases, and metallo-proteases, inhibited only 10-24% of gut protease activity.  相似文献   

11.
12.
13.
14.
Gall-inducing insects exert a unique level of control over the physiology of their host plants. This control can extend to host–plant defenses so that some, if not most, gall-inducing species appear to avoid or modify host plant defenses to effect production of their gall. Included among gall insects is Hessian fly (Mayetiola destructor [Say], Diptera: Cecidomyiidae), a damaging pest of wheat (Triticum aestivum L.) and an emerging model system for studying plant–insect interactions. We studied the dynamics of some defense-related phytohormones and associated fatty acids during feeding of first instar Hessian fly larvae on a susceptible variety of wheat. We found that Hessian fly larvae significantly elevated in their host plants’ levels of linolenic and linoleic acids, fatty acids that may be nutritionally beneficial. Hessian fly larvae also elevated levels of indole-3-acetic acid (IAA), a phytohormone hypothesized to be involved in gall formation, but not the defense-related hormones jasmonic (JA) and salicylic acids. Moreover, we detected in Hessian fly-infested plants a significant negative relationship between IAA and JA that was not present in control plants. Our results suggest that Hessian fly larvae may induce nutritionally beneficial changes while concomitantly altering phytohormone levels, possibly to facilitate plant-defense avoidance.  相似文献   

15.
Abstract.  1. Recent research has addressed the function of herbivore-induced plant volatiles in attracting natural enemies of feeding herbivores. While many types of insect herbivory appear to elicit volatile responses, those triggered by gall insects have received little attention. Previous work indicates that at least one gall insect species induces changes in host-plant volatiles, but no other studies appear to have addressed whether gall insects trigger plant indirect defences.
2. The volatile responses of wheat to feeding by larvae of the Hessian fly Mayetiola destructor (Say) (Diptera: Cecidomyiidae) were studied to further explore indirect responses of plants to feeding by gall insects. This specialist gall midge species did not elicit a detectable volatile response from wheat plants, whereas a generalist caterpillar triggered volatile release. Moreover, Hessian fly feeding altered volatile responses to subsequent caterpillar herbivory.
3. These results suggest that Hessian fly larvae exert a degree of control over the defensive responses of their host plants and offer insight into plant-gall insect interactions. Also, the failure of Hessian fly larvae to elicit an indirect defensive response from their host plants may help explain why natural enemies, which often rely on induced volatile cues, fail to inflict significant mortality on M. destructor populations in the field.  相似文献   

16.
Salmonella Suppression by Known Populations of Bacteria in Flies   总被引:2,自引:0,他引:2  
Survivorship of Salmonella typhimurium, Streptococcus faecalis, Proteus mirabilis, and Pseudomonas aeruginosa was studied in dibiotic and tribiotic interactions in vitro and in various regions of the digestive tract of the blow fly, Calliphora vicina. In dibiotic interactions, Salmonella typhimurium dominated Streptococcus faecalis and was dominated by P. mirabilis, but in neither case was it eliminated from the larval gut. In tribiotic interactions, there was synergic suppression and a definite trend toward elimination of Salmonella typhimurium from the gut. This trend approaches but does not match the total exclusion of S. typhimurium from the gut of maggots with a normal flora. Bacterial survival in the gut of the fly is discussed in relation to doubling time, sweep-out rate of the maggot and prepupal gut, and the midgut bactericide.  相似文献   

17.
18.
19.
The sand fly Lutzomyia longipalpis is the vector of Leishmania infantum, the etiological agent of American visceral leishmaniasis. Despite its importance, until now the internal anatomy of the immature forms has never been described and little is known about their digestive processes. In nature, sand fly larvae feed on organic detritus in the soil, constantly ingesting large amounts of material. The objective of this study was to describe the anatomy of the gut and the pH of the gut lumen, as well as to investigate the proteases responsible for protein digestion. The larvae have a short gut with a prominent, well-developed midgut. Ingestion of food containing indicator dyes permitted the gut pH to be measured. A pH gradient was observed, varying from >9 in the anterior midgut to 6.5-7.0, in the posterior midgut. The endoproteolytic enzymes are secreted in the anterior midgut and are able to digest azocasein over a large pH range, specially at pH 11. Studies with various inhibitors indicated that the digestive endoproteases are trypsin- and chymotrypsin-like enzymes. These results were confirmed by using the substrates BApNA and N-CBZ-L-PpNA, specific for trypsin and chymotrypsin, respectively. Aminopeptidases were also investigated with p-nitroaniline-derived substrates. These enzymes are located in the posterior midgut, bound to the membranes and functioning at an optimal pH of 6.5-8.0. The results presented here are consistent with the current proposal that proteins are digested to peptides in the anterior midgut inside the endoperitrophic space and subsequently undergo digestion in the ectoperitrophic space of the posterior midgut.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号