首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chlorate-resistant mutant B25 of Arabidopsis thaliana (L.) Heinh. was isolated, which has very little or no in vitro nitrate reductase activity and grows poorly on a substrate with nitrate as the sole nitrogen source. The mutation of B25 ( rgn ) is monogenic and recessive, tightly linked to the marker gene an on chromosome 1. Nitrate induces cytochrome- c reductase activity in the mutant but to a lower level than in the wildtype. After sucrose gradient centrifugation the greatest part of the cytochrome- c reductase from induced wildtype is found as 8s type whereas cytochrome- c reductase from B25 under the same conditions is found as 4s type. Nitrate reductase is found at the 8s position. It is suggested that B25 has lost the ability to assemble two 4s subunits showing cytochrome- c reductase activity and a Mo-bearing co-factor into the functional nitrate reductase. Nitrate rather than nitrite is the inducing agent for nitrite reductase, since in B25 nitrite reductase is even more rapidly induced than in the wildtype after addition of nitrate. Both the wildtype and B25 contain a nitrate reductase inhibiting factor when grown on ammonium. This inhibiting factor is a small protein, possibly similar to the nitrate reductase inactivating enzyme reported for other plants.  相似文献   

2.
Abstract The wild-type strain Rhodobacter sphaeroides DSM 158 is a nitrate-reducing bacterium with a periplasmic nitrate reductase. Addition of chlorate to the culture medium causes a stimulation of the phototrophic growth, indicating that this strain is able to use chlorate as an ancillary oxidant. Several mutant strains of R. sphaeroides deficient in nitrate reductase activity were obtained by transposon Tn5 mutagenesis. Mutant strain NR45 exhibited high constitutive nitrate and chlorate reductase activities and phototrophic growth was also increased by the presence of chlorate. In contrast, the stimulation of growth by chlorate was not observed in mutant strains NR8 and NR13, in which transposon Tn5 insertion causes the simultaneous loss of both nitrate and chlorate reductase activities. Tn5 insertion probably does not affect molybdenum metabolism since NR8 and NR13 mutants exhibit both xanthine dehydrogenase and nitrogenase activities. These results that a single enzyme could reduce both nitrate and chlorate in R. sphaeroides DSM 158.  相似文献   

3.
Summary Spontaneous chlorate-resistant (CR) mutants have been isolated from Chlamydomonas reinhardtii wildtype strains. Most of them, 244, were able to grow on nitrate minimal medium, but 23 were not. Genetic and in vivo complementation analyses of this latter group of mutants indicated that they were defective either at the regulatory locus nit-2, or at the nitrate reductase (NR) locus nit-1, or at very closely linked loci. Some of these nit-1 or nit-2 mutants were also defective in pathways not directly related to nitrate assimilation, such as those of amino acids and purines. Chlorate treatment of wild-type cells resulted in both a decrease in cell survival and an increase in mutant cells resistant to a number of different chemicals (chlorate, methylammonium, sulphanilamide, arsenate, and streptomycin). The toxic and mutagenic effects of chlorate in minimal medium were not found when cells were grown either in darkness or in the presence of ammonium, conditions under which nitrate uptake is drastically inhibited. Chlorate was also able to induce reversion of nit mutants of C. reinhardtii, but failed to produce His + revertants or Arar mutants in the BA-13 strain of Salmonella typhimurium. In contrast, chlorate treatment induced mutagenesis in strain E1F1 of the phototrophic bacterium Rhodobacter capsulatus. Genetic analyses of nitrate reductase-deficient CR mutants of C. reinhardtii revealed two types of CR, to low (1.5 mM) and high (15 mM) chlorate concentrations. These two traits were recessive in heterozygous diploids and segregated in genetic crosses independently of each other and of the nit-1 and nit-2 loci. Three her loci and four lcr loci mediating resistance to high (HC) and low (LC) concentrations of chlorate were identified. Mutations at the nit-2 locus, and deletions of a putative locus for nitrate transport were always epistatic to mutations responsible for resistance to either LC or HC. In both nit + and nit chlorate-sensitive (CS) strains, nitrate and nitrite gave protection from the toxic effect of chlorate. Our data indicate that in C. reinhardtii chlorate toxicity is primarily dependent on the nitrate transport system and independent of the existence of an active NR enzyme. At least seven loci unrelated to the nitrate assimilation pathway and mediating CR are thought to control indirectly the efficiency of the nitrate transporter for chlorate transport. In addition, chlorate appears to be a mutagen capable of inducing a wide range of mutations unrelated to the nitrate assimilation pathway.  相似文献   

4.
Nitrate reductase A has been solubilized from purified cytoplasmic membranes by extraction with terl-amyl alcohol. The resulting aqueous solution contained monomeric reductase which polymerized slowly to dimers and tetramers with sedimentation coefficients of respectively 10.5, 16 and 23 Svedbergunits. The polymerization could be stopped to some extent by addition of a small amount of Triton X-100. These distinct entities of nitrate reductase A were separable on electro-focusing, DEAE-column chromatography and polyacrylamide gel electrophoresis, and have been proved to consist of similar subunits with molecular weights of 104000, 63000, and 56000 daltons. The molecular weights of monomeric nitrate reductase A was found to be about 240000 daltons.Chlorate reductase C has been solubilized by a similar procedure, resulting in only monomeric enzyme. Chlorate reductase C exhibited a sedimentation coefficient of 7.7 Svedbergunits, an isoelectric point of pH=4.55 and a molecular weight of approx. 180000 daltons. It was found to consist of three subunits with molecular weights of 75000, 63000 and 56000 daltons. The latter two subunits are most probably common in nitrate reductase A and chlorate reductase C.  相似文献   

5.
Summary Biochemical and genetical characterization of a rice nitrate reductase (NR)-deficient mutant, M819, which had been isolated as a chlorate-resistant mutant, was carried out. In M819, leaf NADH-NR activity was found to be about 10% of that of the wild-type cv Norin 8, while NADPH-NR activity was higher than that in the wild-type; FMNH2-NR and MV-NR activities were also 10% of those of the wild type; BPB-NR activity was higher than that of the wild type; and xanthine dehydrogenase activity was revealed to be present in both. These results suggest that the mutant line M819 lacks the functional heme domain of the NADH-NR polypeptide due to a point mutation or a small deletion within the coding region of the structural gene. Chlorate resistance in M819 was transmitted by a single recessive nuclear gene.Abbreviations NR Nitrate reductase - NiR nitrite reductase - FMNH2 reduced flavin nucleotide - MV reduced methyl viologen - BPB reduced bromphenol blue - XDH xanthine dehydrogenase  相似文献   

6.
7.
Summary Cell suspensions of diploid Arabidopsis thaliana were screened for resistance to chlorate on a medium with ammonium nitrate as the nitrogen source, and after plating on filters to increase the plating efficiency. Thirty-nine lines were selected, four of which were still resistant after two years of subculturing on non-selective medium. Of the latter lines three were nitrate reductase deficient but exhibited some residual nitrate reductase activity; the fourth line showed a high level of enzyme activity. Screening M2-seeds for callus production on selective medium with amino acids as the nitrogen source and chlorate revealed resistant calli in 17 out of 483 M2-groups. Nine well-growing lines, all but one (G3) exhibiting no detectable in vivo nitrate reductase activity, were classified as defective in the cofactor. Two lines (G1 and G3) could be analysed genetically at the plant level. Chlorate resistance was monogenic and recessive. Sucrose gradient fractionation of callus extracts of G1 revealed that a complete enzyme molecule can be assembled. Nitrate reductase activity in G1 could partly be restored by excess molybdenum. It is suggested that G1 is disturbed in the catalytic properties of the cofactor. It appeared that G1 is neither allelic with another molybdenum repairable mutant (B73) nor with another cofactor mutant (B25). Wilting of intact G1 plants could be ascribed to non-closing stomata.  相似文献   

8.
A Paracoccus denitrificans strain (M6Ω) unable to use nitrate as a terminal electron acceptor was constructed by insertional inactivation of the periplasmic and membrane-bound nitrate reductases. The mutant strain was able to grow aerobically with nitrate as the sole nitrogen source. It also grew anaerobically with nitrate as sole nitrogen source when nitrous oxide was provided as a respiratory electron acceptor. These growth characteristics are attributed to the presence of a third, assimilatory nitrate reductase. Nitrate reductase activity was detectable in intact cells and soluble fractions using nonphysiological electron donors. The enzyme activity was not detectable when ammonium was included in the growth medium. The results provide an unequivocal demonstration that P. denitrificans can express an assimilatory nitrate reductase in addition to the well-characterised periplasmic and membrane-bound nitrate reductases. Received: 12 August 1996 / Accepted: 29 October 1996  相似文献   

9.
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root.  相似文献   

10.
Summary Five nitrate reductase-deficient mutants of tomato were isolated from an M2 population after ethyl-methanesulphonate (EMS) seed treatment by means of selection for chlorate resistance. All mutations were monogenic and recessive and complementation analysis revealed that they were non-allelic. Biochemical and molecular characterization of these mutants showed that four of them are cofactor mutants while one is an apoenzyme mutant.  相似文献   

11.
Summary A population of A. thaliana, produced by self-fertilization of ethylmethane sulfonate treated plants, was exposed to chlorate in the watering solution, and plants showing early susceptibility symptoms were rescued. Among the progeny lines of these plants five were shown to be repeatably chlorate-hypersusceptible. One of these lines (designated C-4) possessed elevated activity of nitrate reductase (NR). The NR activity of mutant C-4 was higher than that of normal plants throughout the life cycle. Nitrite reductase and glutamine synthetase activities of C-4 were normal, as were chlorate uptake rate and tissue nitrate content. The elevated NR activity apparently was responsible for the chlorate hypersusceptibility of C-4. Inheritance studies of NR indicated that the elevated activity of C-4 was probably controlled by a single recessive allele.  相似文献   

12.
The nucleotide sequence of the nitrate reductase (NR) molybdenum cofactor (MoCo) domain was determined in four Nicotiana plumbaginifolia mutants affected in the NR apoenzyme gene. In each case, missense mutations were found in the MoCo domain which affected amino acids that were conserved not only among eukaryotic NRs but also in animal sulfite oxidase sequences. Moreover an abnormal NR molecular mass was observed in three mutants, suggesting that the integrity of the MoCo domain is essential for a proper assembly of holo-NR. These data allowed to pinpoint critical residues in the NR MoCo domain necessary for the enzyme activity but also important for its quaternary structure.  相似文献   

13.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

14.
Summary The nitrate reductase structural gene (niaD) and an niaD mutant strain were isolated from Aspergillus parasiticus and used to develop a homologous transformation system. A transformation frequency of 110 to 120 transformants per microgram linear DNA was obtained with the 10.9 kb plasmid pSL82, which contained the niaD gene of A. parasiticus. Plasmid pSL82 was also capable of complementing Aspergillus nidulans FGSC A691, a niaD mutant, though at lower frequencies. Southern hybridization analyses of A. parasiticus niaD transformants showed that the niaD gene of pSL82 had integrated into the fungal genome. In addition, vector (bacterial plasmid) sequences were also present in one of the niaD transformants.Authors with primary and equal contribution in the research project  相似文献   

15.
16.
The periplasmic dissimilatory nitrate reductase from Rhodobacter capsulatus N22DNAR+ has been purified. It comprises a single type of polypeptide chain with subunit molecular weight 90,000 and does not contain heme. Chlorate is not an alternative substrate. A molybdenum cofactor, of the pterin type found in both nitrate reductases and molybdoenzymes from various sources, is present in nitrate reductase from R. capsulatus at an approximate stoichiometry of 1 molecule per polypeptide chain. This is the first report of the occurrence of the cofactor in a periplasmic enzyme. Trimethylamine-N-oxide reductase activity was fractionated by ion exchange chromatography of periplasmic proteins. The fractionated material was active towards dimethylsulphoxide, chlorate and methionine sulphoxide, but not nitrate. A catalytic polypeptide of molecular weight 46,000 was identified by staining for trimethylamine-N-oxide reductase activity after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The same polypeptide also stained for dimethylsulphoxide reductase activity which indicates that trimethylamine-N-oxide and dimethylsulphoxide share a common reductase.Abbreviations DMSO dimethylsulphoxide - LDS lithium dodecyl sulphate - MVH reduced methylviologen - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate - TMAO trimethylamine-N-oxide  相似文献   

17.
Summary The development of an efficient and homologous transformation system for Aspergillus oryzae is described. This is based on nitrate reductase (niaD) of the nitrate assimilation pathway. The niaD system offers a number of inherent advantages over many other systems and may be of general use for nitrate-utilising filamentous fungi. Transformation frequencies of up to 800 transformants per microgram DNA are observed with A. oryzae. The preponderance of integration events take place at the resident niaD locus either by gene conversion (41%), single integration (23%) or multiple tandem integration (36%). Heterologous expression of the A. oryzae niaD gene in the filamentous fungi A. nidulans, A. niger and Penicillum chrysogenum is observed. That heterologous putative niaD hybridisation signals are seen with other fungal DNAs affords the oppotunity to isolate the corresponding niaD from various fungi in order to develop homolgous transformation. Co-transformation with the introduction of the non-selected markers pyrG, tub-2, and uidA has been achieved.  相似文献   

18.
Summary The main nitrogen source for most higher plants is soil nitrate. Prior to its incorporation into amino acids, plants reduce nitrate to ammonia in two enzymatic steps. Nitrate is reduced by nitrate reductase to nitrite, which is further reduced to ammonia by nitrite reductase. In this paper, the complete primary sequence of the precursor protein for spinach nitrite reductase has been deduced from cloned cDNAs. The cDNA clones were isolated from a nitrate-induced cDNA library in two ways: through the use of oligonucleotide probes based on partial amino acid sequences of nitrite reductase and through the use of antibodies raised against purified nitrite reductase. The precursor protein for nitrite reductase is 594 amino acids long and has a 32 amino acid extension at the N-terminal end of the mature protein. These 32 amino acids most likely serve as a transit peptide involved in directing this nuclearencoded protein into the chloroplast. The cDNA hybridizes to a 2.3 kb RNA whose steady-state level is markedly increased upon induction with nitrate.  相似文献   

19.
The relation between nitrate reductase (NR; EC 1.6.6.1) activity, activation state and NR protein in leaves of barley (Hordeum vulgare L.) seedlings was investigated. Maximum NR activity (NRAmax) and NR protein content (Western blotting) were modified by growing plants hydroponically at low (0.3 mM) or high (10 mM) nitrate supply. In addition, plants were kept under short-day (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions in order to manipulate the concentration of nitrate stored in the leaves during the dark phase, and the concentrations of sugars and amino acids accumulated during the light phase, which are potential signalling compounds. Plants were also grown under phosphate deficiency in order to modify their glucose-6-phosphate content. In high-nitrate/long-day conditions, NRAmax and NR protein were almost constant during the whole light period. Low-nitrate/long-day plants had only about 30% of the NRAmax and NR protein of high-nitrate plants. In low-nitrate/long-day plants, NRAmax and NR protein decreased strongly during the second half of the light phase. The decrease was preceded by a strong decrease in the leaf nitrate content. Short daylength generally led to higher nitrate concentrations in leaves. Under short-day/low-nitrate conditions, NRAmax was slightly higher than under long-day conditions and remained almost constant during the day. This correlated with maintenance of higher nitrate concentrations during the short light period. The NR activation state in the light was very similar in high-nitrate and low-nitrate plants, but dark inactivation was twice as high in the high-nitrate plants. Thus, the low NRAmax in low-nitrate/long-day plants was slightly compensated by a higher activation state of NR. Such a partial compensation of a low NRmax by a higher dark activation state was not observed with phosphate-depleted plants. Total leaf concentrations of sugars, of glutamine and glutamate and of glucose-6-phosphate did not correlate with the NR activation state nor with NRAmax. Received: 24 March 1999 / Accepted: 31 May 1999  相似文献   

20.
 Transgenic plants of four glasshouse-grown lettuce cultivars ('Cortina', 'Evola', 'Flora' and 'Luxor') were obtained by co-cultivating excised cotyledons with Agrobacterium tumefaciens. The Agrobacterium strain LBA4404 contained the binary vector pBCSL16, which carried a nitrate reductase (nia) cDNA linked to CaMV promoter and terminator sequences, and the neomycin phosphotransferase II (nptII) gene. Transformed shoots were selected by their ability to root on medium containing kanamycin sulphate, by a positive NPTII assay and by PCR analysis. The presence of the nia cDNA in transgenic lettuce was confirmed by nitrate reductase (NR) enzymatic assay, a reduction in the nitrate content of leaves and by Southern hybridisation. PCR analysis of cDNA fragments from transgenic plants confirmed that both nia and nptII genes were expressed in first seed-generation (T1) lettuce plants. The commercial importance of reduced nitrate concentrations in lettuce is discussed. Received: 7 January 1998 / Revision received: 24 February 1998 / Accepted: 22 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号