首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FoxP3 has emerged as a critical regulator for the development and function of regulatory T cells. Recent studies by several groups have demonstrated that FoxP3 is expressed outside T cell lineages. In this context, we have reported that germline mutation of FoxP3 caused defective thymopoiesis, although its potential contribution to autoimmune diseases has not been analyzed. In this study, we report that, during perinatal period, germline mutation of FoxP3 in scurfy mice caused lymphopenia in the spleen and massive homeostatic proliferation, characterized by the independence from cognate Ags and expression of bona fide markers for homeostatic proliferation. The homeostatic proliferation is suppressed by increases in T cell numbers but not by adoptive transfer of regulatory T cells (Treg). Adoptive transfer of Treg-containing bulk T cells was dramatically more effective than transfer of either Treg alone or Treg-depleted CD4 T cells in curing the scurfy mice. Our data demonstrated that FoxP3 mutation not only ablates Treg, but also dramatically increased homeostatic proliferation during the perinatal period. Homeostatic proliferation acts in concert with Treg defects in causing acute and fatal autoimmune diseases in the FoxP3 mutant mice. These results demonstrated that germline mutation of FoxP3 caused two defects that work in concert to cause lethal autoimmunity.  相似文献   

2.
FoxP3 determines the development of CD4+CD25+ regulatory T (Treg) cells and represses interleukin-2 (IL-2) expression in Treg cells. However, human immunodeficiency virus type 1 (HIV-1) infects and replicates efficiently in FoxP3+ Treg cells. We report that, while inhibiting IL-2 gene expression, FoxP3 enhances gene expression from HIV-1 long terminal repeat (LTR). This FoxP3 activity requires both the N- and C-terminal domains and is inactivated by human IPEX (immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome) mutations. FoxP3 enhances HIV-1 LTR via its specific NFkappaB binding sequences in an NFkappaB-dependent fashion in T cells but not in HEK293 cells. FoxP3 decreases level of histone acetylation at the interleukin-2 locus but not at the HIV-1 LTR. Although NFkappaB nuclear translocation is not altered, FoxP3 enhances NFkappaB-p65 binding to HIV-1 LTR. These data suggest that FoxP3 modulates gene expression in a promoter sequence-dependent fashion by modulating chromatin structure and NFkappaB activity. HIV-1 LTR has evolved to both highjack the T-cell activation pathway for expression and to resist FoxP3-mediated suppression of T-cell activation.  相似文献   

3.
4.
5.
6.
The scurfy (sf) murine mutation causes severe lymphoproliferation, which results in death of hemizygous males (sf/Y) by 22 to 26 days of age. The CD4+ T cells are crucial mediators of this disease. Recent publications have not only identified this mutation as the genetic equivalent of the human disease X-linked neonatal diabetes mellitus, enteropathy, and endocrinopathy syndrome, but also have indicated that the defective protein-scurfin-is a new forkhead/winged-helix protein with a frameshift mutation, resulting in a product without the functional forkhead. These results have lead to speculation that the scurfy gene acts by disrupting the T-cell tolerance mechanism, resulting in hyperresponsiveness and lack of down-regulation. The Rag1KO/sf/Y OVA strain, with virtually 100% of its CD4+ T cells reactive strictly to ovalbumin (OVA) peptide 323-339, is an excellent model for determination of the sf mutation's ability to disrupt tolerance. We hypothesized that Rag1KO/sf/OVA mice would not be tolerant to antigen at a dose that tolerizes control animals. We found that splenic cells from Rag1KO/sf/Y OVA mice injected with the same dose of OVA peptide that induces tolerance in cells from control mice proliferate in vitro in response to OVA peptide. These results are consistent with a defect in the pathway responsible for peripheral T-cell tolerization.  相似文献   

7.
8.
CD4(+)CD25(+) regulatory T cells (CD25(+) Tregs) play a key role in immune regulation. Since hepatitis C virus (HCV) persists with increased circulating CD4(+)CD25(+) T cells and virus-specific effector T-cell dysfunction, we asked if CD4(+)CD25(+) T cells in HCV-infected individuals are similar to natural Tregs in uninfected individuals and if they include HCV-specific Tregs using the specific Treg marker FoxP3 at the single-cell level. We report that HCV-infected patients display increased circulating FoxP3(+) Tregs that are phenotypically and functionally indistinguishable from FoxP3(+) Tregs in uninfected subjects. Furthermore, HCV-specific FoxP3(+) Tregs were detected in HCV-seropositive persons with antigen-specific expansion, major histocompatibility complex class II/peptide tetramer binding affinity, and preferential suppression of HCV-specific CD8 T cells. Transforming growth factor beta contributed to antigen-specific Treg expansion in vitro, suggesting that it may contribute to antigen-specific Treg expansion in vivo. Interestingly, FoxP3 expression was also detected in influenza virus-specific CD4 T cells. In conclusion, functionally active and virus-specific FoxP3(+) Tregs are induced in HCV infection, thus providing targeted immune regulation in vivo. Detection of FoxP3 expression in non-HCV-specific CD4 T cells suggests that immune regulation through antigen-specific Treg induction extends beyond HCV.  相似文献   

9.
10.
Pan X  Yuan X  Zheng Y  Wang W  Shan J  Lin F  Jiang G  Yang YH  Wang D  Xu D  Shen L 《PloS one》2012,7(4):e34662
BACKGROUND: The role of naturally occurring regulatory T cells (Treg) in the control of the development of systemic lupus erythematosus (SLE) has not been well defined. Therefore, we dissect the phenotypically heterogeneous CD4(+)FoxP3(+) T cells into subpopulations during the dynamic SLE development. METHODLOGY/PRINCIPAL FINDINGS: To evaluate the proliferative and suppressive capacities of different CD4(+) T cell subgroups between active SLE patients and healthy donors, we employed CD45RA and CD25 as surface markers and carboxyfluorescein diacetatesuccinimidyl ester (CFSE) dilution assay. In addition, multiplex cytokines expression in active SLE patients was assessed using Luminex assay. Here, we showed a significant increase in the frequency of CD45RA(+)FoxP3(low) naive Treg cells (nTreg cells) and CD45RA(-)FoxP3(low) (non-Treg) cells in patients with active SLE. In active SLE patients, the increased proportions of CD45RA(+)FoxP3(low) nTreg cells were positively correlated with the disease based on SLE disease activity index (SLEDAI) and the status of serum anti-dsDNA antibodies. We found that the surface marker combination of CD25(+)CD45RA(+) can be used to defined CD45RA(+)FoxP3(low) nTreg cells for functional assays, wherein nTreg cells from active SLE patients demonstrated defective suppression function. A significant correlation was observed between inflammatory cytokines, such as IL-6, IL-12 and TNFα, and the frequency of nTreg cells. Furthermore, the CD45RA(+)FoxP3(low) nTreg cell subset increased when cultured with SLE serum compared to healthy donor serum, suggesting that the elevated inflammatory cytokines of SLE serum may promote nTreg cell proliferation/expansion. CONCLUSIONS/SIGNIFICANCE: Our results indicate that impaired numbers of functional CD45RA(+)FoxP3(low) naive Treg cell and CD45RA(-)FoxP3(low) non-suppressive T cell subsets in inflammatory conditions may contribute to SLE development. Therefore, analysis of subsets of FoxP3(+) T cells, using a combination of FoxP3, CD25 and CD45RA, rather than whole FoxP3(+) T cells, will help us to better understand the pathogenesis of SLE and may lead to the development of new therapeutic strategies.  相似文献   

11.
CD4+CD25+FoxP3+ regulatory T cells (Treg) have been shown to be protective in animal models of autoimmunity and acute graft-vs-host disease. However, owing to the functional heterogeneity among CD4+CD25+ T cells, surface markers expressed selectively on functionally active Treg would be useful for purposes of identifying and isolating such cells. We generated a rabbit mAb against murine CD101, a transmembrane glycoprotein involved in T cell activation. Among freshly isolated T cells, CD101 was detected on 25-30% of CD4+CD25+ Treg and approximately 20% of conventional memory T cells. CD101(high) Treg displayed greater in vitro suppression of alloantigen-driven T cell proliferation as compared with CD101(low) Treg. In a model of graft-vs-host disease induced by allogeneic bone marrow transplantation in vivo bioluminescence imaging demonstrated reduced expansion of donor-derived luciferase-labeled conventional T cells in mice treated with CD101(high) Treg, compared with CD101(low) Treg. Moreover, treatment with CD101(high) Treg resulted in improved survival, reduced proinflammatory cytokine levels and reduced end organ damage. Among the CD101(high) Treg all of the in vivo suppressor activity was contained within the CD62L(high) subpopulation. We conclude that CD101 expression distinguishes murine Treg with potent suppressor activity.  相似文献   

12.
The presence of FoxP3(+) regulatory T cells (Tregs) is necessary for control of deleterious immune responses in the steady state; however, mechanisms for maintaining the frequency and quality of endogenous Tregs are not well defined. In this study, we used in vivo modulators of the CD28 and CTLA4 pathways administered to intact mice to reveal mechanisms controlling the homeostasis and phenotype of endogenous Tregs. We demonstrate that expression of the negative costimulatory regulator CTLA4 on FoxP3(+) Tregs in vivo is a direct consequence of their rapid, perpetual homeostasis. Up-regulation of CTLA4 expression occurs only on FoxP3(+) Tregs undergoing extensive proliferation and can be abrogated by inhibiting the CD28 pathway, coinciding with a reduction in FoxP3(+) Treg proliferation and frequency. We further demonstrate that CTLA4 negatively regulates steady-state Treg homeostasis, given that inhibiting CTLA4 signaling with an anti-CTLA4 blocking Ab greatly enhances Treg proliferation and overall Treg frequency. Our findings provide new insight into the origin and role of CTLA4 expression on natural FoxP3(+) Tregs and reveal opposing effects of costimulation modulators on the steady-state level and quality of Tregs, with implications regarding their effects on endogenous Tregs in patients receiving immunotherapy.  相似文献   

13.
14.
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3(+) regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1(-/-) mice; however, more severe disease was induced in EBI3(-/-)Rag1(-/-) mice than in Rag1(-/-) mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4(+)Foxp3(+) Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3(-/-) mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.  相似文献   

15.

Objective

Immune imbalance between regulatory T (Treg) and Th17 cells is a characteristic of systemic sclerosis (SSc). The functional heterogeneity among Treg can be elucidated by separating Treg into different subsets based on the expression of FoxP3 and CD45RA. The aim of this study was to investigate the role of Treg subsets in the immune imbalance in naïve SSc.

Methods

Peripheral blood mononuclear cells (PBMCs) of 31 SSc patients and 33 healthy controls were analyzed for the expression of CD4, CD25, CD45RA, CTLA-4, FoxP3, and IL-17 using flow cytometry. Treg immunesuppression capacity was measured in co-culture experiments. The expression of FoxP3, CTLA-4, IL-17A, and RORC mRNA was measured by real-time PCR.

Results

The frequency of CD4+CD25+FoxP3+ Treg cells was significantly elevated in patients with SSc (3.62±1.14 vs 1.97±0.75, p<0.001) with diminished immunosuppression capacity. In SSc, the proportion of FoxP3highCD45RA activated Treg cells (aTreg) was decreased, the proportion of FoxP3lowCD45RA T cells was increased, and the proportion of FoxP3lowCD45RA+ resting Treg cells (rTreg) was decreased. The immune suppression capacity of aTreg and rTreg was diminished, while FoxP3lowCD45RA T cells exhibited a lack of suppression capacity. The immune dysfunction of aTreg was accompanied by the abnormal expression of CTLA-4. Th17 cell numbers were elevated in SSc, FoxP3lowCD45RA T cells produced IL-17, confirming their Th17 potential, which was consistent with the elevated levels of FoxP3+IL-17+ cells in SSc.

Conclusion

A decrease in aTreg levels, along with functional deficiency, and an increase in the proportion of FoxP3lowCD45RA T cells, was the reason for the increase in dysfunctional Treg in SSc patients, potentially causing the immune imbalance between Treg and Th17 cells.  相似文献   

16.
The identification of regulatory T (Treg) cells was originally based on CD25 expression; however, CD25 is also expressed by activated effector T cells. FoxP3 is a more definitive marker of Treg cells, and CD4(+) FoxP3(+) CD25(+) T cells are considered the dominant natural Treg (nTreg) population. It has been suggested that certain CD4(+) FoxP3(+) Treg cells do not express CD25. In this study, we used a murine model of respiratory infection with Bordetella pertussis to examine the role of Treg cells in protective immunity in the lung. We first demonstrated that CD4(+) FoxP3(+) CD25(-) cells are the dominant Treg population in the lung, gut and liver. Pre-activated lung CD4(+) FoxP3(+) CD25(-) cells suppressed CD4(+) effector T cells in vitro, which was partly mediated by IL-10 and not dependent on cell contact. Furthermore, CD4(+) FoxP3(+) CD25(-) IL-10(+) T cells were found in the lungs of mice at the peak of infection with B. pertussis. The rate of bacterial clearance was not affected by depletion of CD25(+) cells or in IL-10-deficient (IL-10(-/-) ) mice, but was compromised in CD25-depleted IL-10(-/-) mice. Our findings suggest that IL-10-producing CD4(+) FoxP3(+) CD25(-) T cells represent an important regulatory cell in the lung.  相似文献   

17.
Lymphocyte differentiation from naive CD4(+) T cells into mature Th1, Th2, Th17, or T regulatory cell (Treg) phenotypes has been considered end stage in character. In this study, we demonstrate that dendritic cells (DCs) activated with a novel immune modulator B7-DC XAb (DC(XAb)) can reprogram Tregs into T effector cells. Down-regulation of FoxP3 expression after either in vitro or in vivo Treg-DC(XAb) interaction is Ag-specific, IL-6-dependent, and results in the functional reprogramming of the mature T cell phenotype. The reprogrammed Tregs cease to express IL-10 and TGFbeta, fail to suppress T cell responses, and gain the ability to produce IFN-gamma, IL-17, and TNF-alpha. The ability of IL-6(+) DC(XAb) and the inability of IL-6(-/-) DC(XAb) vaccines to protect animals from lethal melanoma suggest that exogenously modulated DC can reprogram host Tregs. In support of this hypothesis and as a test for Ag specificity, transfer of DC(XAb) into RIP-OVA mice causes a break in immune tolerance, inducing diabetes. Conversely, adoptive transfer of reprogrammed Tregs but not similarly treated CD25(-) T cells into naive RIP-OVA mice is also sufficient to cause autoimmune diabetes. Yet, treatment of normal mice with B7-DC XAb fails to elicit generalized autoimmunity. The finding that mature Tregs can be reprogrammed into competent effector cells provides new insights into the plasticity of T cell lineage, underscores the importance of DC-T cell interaction in balancing immunity with tolerance, points to Tregs as a reservoir of autoimmune effectors, and defines a new approach for breaking tolerance to self Ags as a strategy for cancer immunotherapy.  相似文献   

18.
19.
The binding of herpesvirus entry mediator (HVEM) to B and T lymphocyte attenuator (BTLA) is known to activate an inhibitory signaling cascade in effector T (Teff) cells, but we now report that the HVEM-BTLA pathway is also important to the suppressive function of regulatory T cells (Tregs). Although naive T cells up-regulated BTLA upon TCR activation, Treg expression of BTLA remained low, regardless of TCR activation. Moreover, BTLA(-/-) CD4(+)CD25(+) Tregs had normal suppressive activity, whereas BTLA(-/-) Teff cells were more resistant than wild-type Teff cells to suppression by Tregs, suggesting BTLA expression by Teff cells was required for their suppression by Tregs. In contrast to BTLA, HVEM expression was comparable in naive Tregs vs Teff cells, but after stimulation HVEM expression was quickly down-regulated by Teff cells, whereas HVEM was further up-regulated by Tregs. HVEM(-/-) Tregs had decreased suppressive activity as compared with wild-type Tregs, indicating that Treg expression of HVEM was required for optimal suppression. Consistent with this, T cells from Scurfy mice (FoxP3 mutant) lacked HVEM gene expression, and adoptively transferred wild-type but not HVEM(-/-) Tregs were able to control alloresponses in vivo by normal Teff cells. Our data demonstrate that Tregs can exert their effects via up-regulation of the negative costimulatory ligand HVEM, which upon binding to BTLA expressed by Teff cells helps mediate the suppressive functions of Tregs in vitro and in vivo.  相似文献   

20.
CD4(+)CD25(+) regulatory T cells (Tregs) inhibit immune responses to a variety of Ags, but their specificity and mechanism of suppression are controversial. This controversy is largely because many studies focused on natural Tregs with undefined specificities and suppression has frequently been measured on polyclonal T cell responses. To address the issue of specificity further, we have bred K(d)-specific, CD4(+) TCR (TCR75) transgenic mice to Foxp3(gfp) knockin reporter mice to permit sorting of Tregs with a known specificity. Foxp3(gfp).TCR75 mice did not express significant numbers of natural FoxP3(+) Tregs expressing the TCR75 transgenes, but FoxP3 expression was induced by stimulating with K(d) plus TGF-beta. The resulting GFP(+) TCR75 cells were anergic, whereas the GFP(-) TCR75 cells proliferated upon restimulation with K(d) peptide. Yet both exhibited severely reduced expression of intracellular IFN-gamma and TNF-alpha upon restimulation. GFP(+), but not GFP(-), TCR75 T cells suppressed responses by naive TCR75 T cells and by nontransgenic spleen cells stimulated with anti-CD3. GFP(+) TCR75 cells also inhibited polyclonal C57BL/6 anti-K(d) CTL responses if the APC expressed K(d) and both MHC class I and class II, and responses by OT1 T cells to B6.K(d).OVA but not B6.K(d) plus OVA expressing APC, demonstrating linked-suppression of CD8 responses. Thus, Tregs exhibit a greater degree of specificity in vitro than previously appreciated. The observation that Tregs and responder T cells must recognize the same APC provides a mechanistic explanation for the observation that Tregs must be in direct contact with effector T cells to suppress their responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号