首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Understanding the role of bacteria in microbial food webs is intimately connected to the methods applied in the direct enumeration of bacteria. We have examined over 220 papers describing studies in which fluorochrome staining followed by epifluorescent microscopic direct counts was used to estimate total bacterial abundances. In this review, we summarize patterns in the use of 3,6-bis[dimethylamino]acridinium chloride (acridine orange) and 4',6-diamidino-2-phenylindole (DAPI), the two stains most frequently used in bacterial enumeration. The staining of samples with these fluorochromes, followed by filtration and direct counting of bacterial cells on filter surfaces, has become routine over the past 10 years. We examine trends in features of the standard direct count methods, such as sample preservation and preparation techniques, membrane filter types used, applied stain concentrations, duration of staining, and counting strategies, in relation to the types of samples being examined. The high variability in bacterial counts observed within similar sample types may be partially accounted for by differences in methods. Synthesizing review findings, we include a recommended method for the direct enumeration of bacteria in environmental samples.  相似文献   

2.
《Biotechnology advances》2017,35(4):490-504
The success of bioaugmentation processes for groundwater bioremediation requires efficient transport of bacteria in the subsurface environment. In this paper, the factors that influence transport of bacterial cells in porous media are reviewed and the effects of surfactants on the transport are discussed. Movement of bacterial cells in porous media is a process driven by advection and hydrodynamic dispersion forces of fluids. Immobilization of bacterial cells takes place due to processes such as adsorption and straining. Blocking and ripening along with bacterial migration process decrease and increase the retention of cells in porous media, respectively. Physicochemical properties of the porous media, groundwater chemistry, and properties of the bacterial cells affect the transport behavior. Surfactants have the potential to modify bacterial surface properties for both bacterial cells and medium solids, and thus enhance bacterial transport.  相似文献   

3.
One of the most common methods of tracking movement of bacteria in groundwater environments involves a priori fluorescent staining. A major concern in using these stains to label bacteria in subsurface injection-and-recovery studies is the effect they may have on the bacterium's transport properties. Previous studies investigated the impact of fluorophores on bacterial surface properties (e.g. zeta potential). However, no previous study has looked at the impact of fluorescent staining on swimming speed and chemotaxis. It was found that DAPI lowered the mean population swimming speed of Pseudomonas putida F1 by 46% and Pseudomonas stutzeri by 55%. DAPI also inhibited the chemotaxis in both strains. The swimming speeds of P. putida F1 and P. stutzeri were diminished slightly by CFDA/SE, but not to a statistically significant extent. CFDA/SE had no effect on chemotaxis of either strain to acetate. SYBR(?) Gold had no effect on swimming speed or the chemotactic response to acetate for either strain. This research indicates that although DAPI may not affect sorption to grain surfaces, it adversely affects other potentially important transport properties such as swimming and chemotaxis. Consequently, bacterial transport studies conducted using DAPI are biased to nonchemotactic conditions and do not appear to be suitable for monitoring the effect of chemotaxis on bacterial transport in shallow aquifers.  相似文献   

4.
The fate and transport of pathogenic bacteria from wastewater treatment facilities in the Earth''s subsurface have attracted extensive concern over recent decades, while the impact of treated-wastewater chemistry on bacterial viability and transport behavior remains unclear. The influence of retention time in effluent from a full-scale municipal wastewater treatment plant on the survival and deposition of Staphylococcus aureus and Escherichia coli strains in sand columns was investigated in this paper. In comparison to the bacteria cultivated in nutrient-rich growth media, retention in treated wastewater significantly reduced the viability of all strains. Bacterial surface properties, e.g., zeta potential, hydrophobicity, and surface charges, varied dramatically in treated wastewater, though no universal trend was found for different strains. Retention in treated wastewater effluent resulted in changes in bacterial deposition in sand columns. Longer retention periods in treated wastewater decreased bacterial deposition rates for the strains evaluated and elevated the transport potential in sand columns. We suggest that the wastewater quality should be taken into account in estimating the fate of pathogenic bacteria discharged from wastewater treatment facilities and the risks they pose in the aquatic environment.  相似文献   

5.
We examined the effect of different sediment types on the staining effectiveness of the fluorochrome DAPI (4′-6-diamidino-2-phenylindole dihydrochloride) over a wide range of concentrations and on the masking effect of sediment particles on DAPI-stained bacteria. Sediment type greatly affects the staining efficiency of DAPI, and most published studies seem to have underestimated bacterial abundances by using suboptimal concentrations of the fluorochrome. A DAPI concentration of 5 μg ml−1 is required to effectively stain the bacteria in most sediments that can be sampled with a gravity corer. When the sediments are diluted 687 times (a dilution factor similar to those most often used in the literature), sediment particle masking of stained bacteria is highly variable for different sediment types. By using a measure of turbidity (A750) to indicate masking and the quartz-corrected water content as a measure of the initial (in situ) dilution of each sediment type, it becomes possible to show a linear relationship between masking and the integrated (initial × experimental) dilution of various sediments. This relationship allows the development of a correction procedure for masking which makes accurate and unbiased counts possible. Data so obtained show a strong relationship between bacteria (cells per milliliter of fresh sediment) and sediment organic matter (grams [dry weight] per milliliter of fresh sediment), one that is not discernable without the correction. The proposed method of staining and correction for sediment masking provides the basis for a standardized interpretation of sediment bacterial counts.  相似文献   

6.
A major limitation for the use of two-proton laser scanning microscopy (2P-LSM) in biofilm and other studies is the lack of a thorough understanding of the excitation-emission responses of potential fluorochromes. In order to use 2P-LSM, the utility of various fluorochromes and probes specific for a range of biofilm constituents must be evaluated. The fluorochromes tested in this study included classical nucleic acid-specific stains, such as acridine orange (AO) and 4",6"-diamidino-2-phenylindole (DAPI), as well as recently developed stains. In addition, stains specific for biofilm extracellular polymeric substances (EPS matrix components) were tested. Two-photon excitation with a Ti/Sapphire laser was carried out at wavelengths from 760 to 900 nm in 10-nm steps. It was found that autofluorescence of phototrophic organisms (cyanobacteria and green algae) resulted in strong signals for the entire excitation range. In addition, the coenzyme F(420)-related autofluorescence of methanogenic bacteria could be used to obtain images of dense aggregates (excitation wavelength, 780 nm). The intensities of the emission signals for the nucleic acid-specific fluorochromes varied. For example, the intensities were similar for excitation wavelengths ranging from 780 to 900 nm for AO but were higher for a narrower range, 780 to 810 nm, for DAPI. In selective excitation, fading, multiple staining, and combined single-photon-two-photon studies, the recently developed nucleic acid-specific fluorochromes proved to be more suitable regardless of whether they are intended for living or fixed samples. Probes specific for proteins and glycoconjugates allowed two-photon imaging of polymeric biofilm constituents. Selective excitation-emission was observed for Calcofluor White M2R (780 to 800 nm) and SyproOrange (880 to 900 nm). In addition, fluor-conjugated concanavalin A lectins were examined and provided acceptable two-photon emission signals at wavelengths ranging from 780 to 800 nm. Finally, CellTracker, a fluorochrome suitable for long-term labeling of microbial eucaryote cells, was found to give strong emission at wavelengths ranging from 770 to 810 nm. If fluorochromes have the same two-photon excitation cross section, they are suitable for multiple staining and multichannel recording. Generally, if an appropriate excitation wavelength and fluorochrome were used, it was possible to obtain more highly resolved images for thick biofilm samples with two-photon laser microscopy than with conventional single-photon laser microscopy. Due to its potential for higher resolution in light-scattering tissue-like material, such as biofilms, and extremely localized excitation, 2P-LSM is a valuable addition to conventional confocal laser scanning microscopy with single-photon excitation. However, further development of the method and basic research are necessary to take full advantage of nonlinear excitation in studies of interfacial microbial ecology.  相似文献   

7.
The gas-water interface (GWI) is likely to have important effects on bacterial adsorption and transport in unsaturated porous media. A glass apparatus that isolated GWIs in ports above a flowthrough suspension of a groundwater bacterial isolate was used to represent unsaturated porous media. The surface microlayer was collected by placing a polycarbonate filter on the GWI. The filter was stained, and the bacteria were enumerated by direct count. The significance of five independent variables on the surface density of cells (s, in cells per square millimeter) was determined by nonlinear multiple regression. Three of the variables were shown to be significant: surfactant concentration (d), time (t), and bulk bacterial concentration (B). The surface density decreased with increasing d and increased with increasing t and B. When surfactant was absent, the GWI became highly enriched in bacteria. For example, when d = 0, 48 h < t < 72 h, and 5,000 cells mm(sup-3) < B < 10,000 cells mm(sup-3), s averaged 3.0 x 10(sup4) cells mm(sup-2). This surface density occupied about 6.0% of the GWI, and the surface microlayer concentration of cells was 190 times the bulk concentration. The other two variables: pH (p) and ionic strength (I) were shown to be insignificant. The strong effect of d and the lack of effect of I and p support the hypothesis that hydrophobic interaction dominates bacterial adsorption to the GWI.  相似文献   

8.
The following fluorochromes were studied as probes for discrimination between living and dead Schistosoma mansoni schistosomula: ethidium bromide (EB), propidium iodide (PI), diamidinophenylindole (DAPI), and carboxyfluoresceine diacetate (C-FDA). While schistosomula stained with EB, PI, or C-FDA showed leakage of fluorochrome into the medium, this was not the case with DAPI. Dead schistosomula, which were stained with DAPI, showed an intense blue fluorescence, while living schistosomula were not stained even after prolonged incubation. In addition, the low DAPI concentration (1 microgram/ml) in the medium proved not to be toxic to the schistosomula, nor did it cause any background fluorescence. These properties make DAPI an ideal probe: the viability of S. mansoni schistosomula in cytotoxicity tests can be continuously monitored in tissue culture trays, using an inverted microscope with simultaneous transmitted light and incident fluorescent light illumination.  相似文献   

9.
The migration of chemotactic bacteria in liquid media has previously been characterized in terms of two fundamental transport coefficients-the random motility coefficient and the chemotactic sensitivity coefficient. For modeling migration in porous media, we have shown that these coefficients which appear in macroscopic balance equations can be replaced by effective values that reflect the impact of the porous media on the swimming behavior of individual bacteria. Explicit relationships between values of the coefficients in porous and liquid media were derived. This type of quantitative analysis of bacterial migration is necessary for predicting bacterial population distributions in subsurface environments for applications such as in situ bioremediation in which bacteria respond chemotactically to the pollutants that they degrade.We analyzed bacterial penetration times through sand columns from two different experimental studies reported in the literature within the context of our mathematical model to evaluate the effective transport coefficients. Our results indicated that the presence of the porous medium reduced the random motility of the bacterial population by a factor comparable to the theoretical prediction. We were unable to determine the effect of the porous medium on the chemotactic sensitivity coefficient because no chemotactic response was observed in the experimental studies. However, the mathematical model was instrumental in developing a plausible explanation for why no chemotactic response was observed. The chemical gradients may have been too shallow over most of the sand core to elicit a measurable response. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 487-496, 1997.  相似文献   

10.
DNA stainability by different fluorochromes has been compared in exponentially dividing and stationary Euglena cells. With the intercalating fluorochromes, ethidium bromide, acridine orange and DAPI, a decrease of fluorescence intensity of the G1 cells is observed when cells enter stationary stage. However this decrease of fluorescence is not obtained with the nonintercalating fluorochrome Hoechst 33258. If nuclear basic proteins are extracted, however, the intensity of staining by either Hoechst 33258 or ethidium-bromide is comparable in stationary and dividing cells. Therefore, the decrease of fluorescence intensity of the G1 cells observed during the transition from exponential to stationary phase is not due to a loss of DNA but is related to the exposure of chromatin binding sites for ethidium bromide. In Euglena cells, DNA accessibility for intercalating fluorochromes depends upon chromatin structure and consequently upon cell age.  相似文献   

11.
Summary The secondary constriction in human chromosome 1 consists of a proximal segment stained by the GC-specific fluorochrome mithramycin and a distal segment stained by such fluorochromes as DAPI or DIPI, which show enhanced fluorescence intensities in AT-rich regions of the chromosomes. A study involving 21 individuals revealed that both parts are independently involved in length variability. In two cases, two GC-rich regions separated by an AT-rich segment and an additional distal AT-rich part were found.  相似文献   

12.
Highly chlorinated Escherichia coli cannot be stained by propidium iodide   总被引:1,自引:0,他引:1  
Several studies have shown that the staining by fluorochromes (DAPI, SYBR Green II, and TOTO-1) of bacteria is altered by chlorination. To evaluate the effect of chlorine (bleach solution) on propidium iodide (PI) staining, we studied Escherichia coli in suspension and biomolecules in solution (DNA, RNA, BSA, palmitic acid, and dextran) first subjected to chlorine and then neutralized by sodium thiosulphate. The suspensions and solutions were subsequently stained with PI. The fluorescence intensity of the PI-stained DNA and RNA in solution dramatically decreased with an increase in the chlorine concentration applied. These results explain the fact that for chlorine concentrations higher than 3 micromol/L Cl2, the E. coli cells were too damaged to be properly stained by PI. In the case of highly chlorinated bacteria, it was impossible to distinguish healthy cells (with a PI-impermeable membrane and undamaged nucleic acids), which were nonfluorescent after PI staining, from cells severely injured by chlorine (with a PI-permeable membrane and damaged nucleic acids) that were also nonfluorescent, as PI penetrated but did not stain chlorinated nucleic acids. Our results suggest that it would be prudent to be cautious in interpreting the results of PI staining, as PI false-negative cells (cells with compromised membranes but not stained by PI because of nucleic acid damage caused by chlorine) are obtained as a result of nucleic acid damage, leading to an underestimation of truly dead bacteria.  相似文献   

13.
AIMS: To apply fluorescent staining method for fast assessment of microbial quality of herbal medicines. METHODS AND RESULTS: The number of total bacteria and esterase-active bacteria on powdered traditional Chinese medicines were enumerated by fluorescent staining method using 6-carboxyfluorescein diacetate (6CFDA) and 4',6-diamidino-2-phenylindole (DAPI), and they were compared with colony-forming units (CFU). The CFU was approximately 10(3) per gram in ginseng radix, and no bacterial colonies were detected from others. However, the total bacterial number (TDC) was more than 10(7) per gram, and number of bacteria possessing esterase activity ranged from 1 to 3% of TDC. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Many bacteria in each Chinese medicine had enzyme activity and most of them could not be detected by conventional plate counting technique. Enumeration of bacterial cells on traditional Chinese medicines by fluorescent staining method requires less than 1 h. The double staining method with 6CFDA and DAPI could be applicable to rapid microbial monitoring of crude drugs.  相似文献   

14.
DNA-binding fluorochromes are often used for vital staining of plant cell nuclei.However,it is not always sure whether the cells after staining still remain in living state.We chose several criteria to estimate the validity of real vital staining for sexual cell nuclei.These were:the cytoplasmic streaming in pollen tubes whose nuclei were stined,the simultaneous visualization of fluorochromatic reaction and nucleus staining in isolated generative cells,and the capability of isolated.prestained generative or sperm cells to fuse with other protoplasts.The results confirmed that 4,6-diamidino-2-phenylindole(DAPI),Hoechst 33258 and mithramycin could be used as real vital stains,though their efficiency varied from case to case;among them DAPI showed best effect.The fluo rescent vital staining technique offered a useful means foridentification and selection of heterokaryons in gametoplast manipulation studies.  相似文献   

15.
The objective of this study was to investigate the influence of an anionic rhamnolipid biosurfactant on the transport of bacterial cells through soil under saturated conditions. Three cell types with various hydrophobicities, i.e., Pseudomonas aeruginosa ATCC 9027, ATCC 27853, and ATCC 15442, were used in this study. In a series of experiments, columns packed with sterile sand were saturated with sterile artificial groundwater for 15 h, and then 3 pore volumes of (sup3)H-labeled bacterial suspensions with various rhamnolipid concentrations was pumped through the column. This was followed by 4 pore volumes of the rhamnolipid solution alone. The measured bacterial cell breakthrough curves were optimized by using an advection-dispersion transport model incorporating two-domain reversible sorption (instantaneous and rate limited) and with two first-order sink terms for irreversible adsorption. The influence of the rhamnolipid on the surface charge densities of the bacteria and the porous medium was also investigated. The results show that the rhamnolipid enhanced the transport of all cell types tested. For example, the rhamnolipid increased the recovery of the most hydrophilic strain, ATCC 9027, from 22.5 to 56.3%. Similarly, the recovery of ATCC 27853 increased from 36.8 to 49.4%, and the recovery of ATCC 15442, the most hydrophobic strain, increased from 17.7 to 40.5% in the presence of the rhamnolipid. The negative surface charge density of the porous medium was increased, while the surface charge density of the bacteria was not changed in the presence of the rhamnolipid. The model results suggest that the rhamnolipid predominantly affected irreversible adsorption of cells.  相似文献   

16.
Heterocysts and vegetative cells of the filamentous nitrogen-fixing Anabaena azollae isolated from the apex to the basal leaf cavities of Azolla filiculoides were examined by epifluorescent microscope after fluorochrome staining. Acridine orange (AO), DAPI, and chromomycin fluorochromes were used in order to evidence total DNA content and respectively, A + T and G + C bases. Measurements of fluorescence intensities were made on photographic prints by the automatic image analysis system Quantimet 970. Heterocysts contained higher amounts of DNA than did vegetative cells, and their content strongly increased in the basal leaf cavities. The heterocyst DAPI brightness was quite uniform, whereas in vegetative cells DAPI brightness increased from the apex to the basal groups. In vegetative cells from the apex to the median group, the percentage of DAPI brightness was 60-85% with respect to AO brightness, whereas in heterocysts of the same groups DAPI brightness was 40-50% with respect to AO brightness. In the basal group, brightness due to DAPI staining was comparable with those of previous group both in heterocysts and in vegetative cells, whereas chromomycin brightness increased strongly in heterocysts. These data show that heterocyst changes its DNA content and composition in the basal leaf cavities, suggesting that its lifetime is not completely over.  相似文献   

17.
A microscale model for the transport and coupled reaction of microbes and chemicals in an idealized two-dimensional porous media has been developed. This model includes the flow, transport, and bioreaction of nutrients, electron acceptors, and microbial cells in a saturated granular porous media. The fluid and chemicals are represented as a continuum, but the bacterial cells and solid granular particles are represented discretely. Bacterial cells can attach to the particle surfaces or be advected in the bulk fluid. The bacterial cells can also be motile and move preferentially via a run and tumble mechanism toward a chemoattractant. The bacteria consume oxygen and nutrients and alter the profiles of these chemicals. Attachment of bacterial cells to the soil matrix and growth of bacteria can change the local permeability. The coupling of mass transport and bioreaction can produce spatial gradients of nutrients and electron acceptor concentrations. We describe a numerical method for the microscale model, show results of a convergence study, and present example simulations of the model system.  相似文献   

18.
In this article, a new mechanism influencing the transport of microorganisms through unsaturated porous media is examined, and a new method for directly visualizing bacterial behavior within a porous medium under controlled chemical and flow conditions is introduced. Resting cells of hydrophilic and relatively hydrophobic bacterial strains isolated from groundwater were used as model microorganisms. The degree of hydrophobicity was determined by contact-angle measurements. Glass micromodels allowed the direct observation of bacterial behavior on a pore scale, and three types of sand columns with different gas saturations provided quantitative measurements of the observed phenomena on a porous medium scale. The reproducibility of each break-through curve was established in three to five repeated experiments. The data collected from the column experiments can be explained by phenomena directly observed in the micromodel experiments. The retention rate of bacteria is proportional to the gas saturation in porous media because of the preferential sorption of bacteria onto the gas-water interface over the solid-water interface. The degree of sorption is controlled mainly by cell surface hydrophobicity under the simulated groundwater conditions because of hydrophobic forces between the organisms and the interfaces. The sorption onto the gas-water interface is essentially irreversible because of capillary forces. This preferential and irreversible sorption at the gas-water interface strongly influences the movement and spatial distribution of microorganisms.  相似文献   

19.
Untreated or improperly treated wastewater has often been cited as the primary contamination source of groundwater. The use of decentralized wastewater treatment systems has applicability around the world since it obviates the need for extensive infrastructure development and expenditures. The use of a submerged flow constructed wetland (CW) and a sand filter to remove bacterial and viral pathogens from wastewater streams was evaluated in this study Salmonella sp. and a bacteriophages tracer were used in conjunction with the conservative bromide tracer to understand the fate and transport of these organisms in these treatment systems. Viral breakthrough numbers in the sand filter and CW were similar with a Spearman Rank correlation of 0.8 (P<0.05). In the CW, the virus exhibited almost a 3-log reduction, while in the sand filter, the viruses exhibited a 2-log reduction. The bacterial tracers, however, did not exhibit similar reductions. Low numbers of bacteria and viruses were still detectable in the effluent streams suggesting that disinfection of the effluent is critical. The survival of the tracer bacteria and viruses was as expected dependent on the biotic and abiotic conditions existing within the wastewater. The results suggest that the microbial removal characteristics of decentralized wastewater treatment systems can vary and depend on factors such as adsorption, desorption and inactivation which in turn depend on the design specifics such as filter media characteristics and local climatic conditions.  相似文献   

20.
A number of microscopic techniques and dyes are available to diagnose microsporidian infections in invertebrate and vertebrate hosts. Among these, DNA-specific fluorochrome DAPI is widely used to stain DNA in prokaryotic and eukaryotic cells, alone or in combination with other histochemical or fluorescent dyes. Moreover, this dye also binds to membraneous structures and protein complexes. In our studies, DAPI was used to stain spores of microsporidia infecting orthopteran, coleopteran, dipteran and lepidopteran insect hosts. DAPI staining of diplokarya helped to discriminate the Nosema-like microsporidian spores from spore-shaped bodies lacking this characteristic staining. It was found, moreover, that non-DNA staining occurred in many cases and other components of the spores were stained: the exospore, the cytoplasm, the extruded polar filament and the polaroplast. Staining of these structures was feeble as compared to DNA and in most cases did not interfere with nuclear apparatus staining. Feebly stained cytoplasm and exospore clearly indicated unstained zone of endospore, making it easier to diagnose both mono- and diplokaryotic spores. Staining of extruded polar filament allowed to demonstrate viability and to observe some stages of extrusion process of microsporidian spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号