首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ornithine decarboxylase (ODC), the first enzyme in the polyamine biosynthetic pathway, is encoded by at least one member of a multi-gene family in the mouse. Analysis of a polymorphism in ODC structure in recombinant inbred strains has enabled assigning a functional ODC structural gene (Odc) to the proximal region of mouse chromosome 12 between Apob and Es25. Linkage of Odc to Apob and Ah is conserved in the mouse and human genomes.  相似文献   

2.
Distal mouse chromosome 12 is imprinted. Phenotypic analysis of mouse embryos with maternal or paternal uniparental disomy for the whole of chromosome 12 has characterized the developmental defects associated with the altered dosage of imprinted genes on this chromosome. Here we conduct a characterization of maternal and paternal Dp(dist12) mice using the reciprocal translocation T(4;12)47H. This limits the region analysed to the chromosomal domain distal to the T47H breakpoint in B3 on mouse chromosome 12. Both MatDp(dist12)T47H and PatDp(dist12)T47H conceptuses are non-viable and the frequency of recovery of Dp(dist12) conceptuses by 10.5 days post coitum (dpc) was lower than expected after normal adjacent-1 disjunction. A subset of MatDp(dist12) embryos can survive up to one day post partum. In contrast to paternal uniparental disomy 12 embryos, no live PatDp (dist12) embryos were recovered after 16.5 days of gestation. Other phenotypes observed in maternal and paternal chromosome 12 uniparental disomy mice are recapitulated in the Dp(dist12) mice and include placental, muscle and skeletal defects. Additional defects were also noted in the skin of both MatDp(dist12) and maternal uniparental disomy 12 embryos. This study shows that the developmental abnormalities associated with the altered parent of origin for mouse chromosome 12 can be attributed to the genomic region distal to the T47H breakpoint.  相似文献   

3.
We have identified a novel, maternally expressed imprinted gene encoding a C/D-box small nucleolar RNA (snoRNA) called MBII-343, which may regulate RNA editing or alternative splicing of an as yet unknown target gene. This gene is closely linked to an imprinted gene, Meg3, on mouse distal chromosome 12, which is syntenic to human chromosome 14. The paternal duplication of mouse distal chromosome 12 leads to late embryonal/neonatal lethality, growth promotion, and cardiomyopathy, whereas maternal duplication leads to late embryonal lethality and growth retardation. Human paternal uniparental disomy for chromosome 14 leads to musculoskeletal problems and mental retardation, whereas maternal uniparental disomy leads to intrauterine growth retardation, motor developmental delay, premature puberty, hypotonia, joint laxity, macrocephaly, short statue, neonatal poor sucking, skill with jigsaw puzzles, skin picking, obesity, and maturity onset diabetes of the young.  相似文献   

4.
The human gene for histidase (histidine ammonia-lyase; HAL), the enzyme deficient in histidinemia, was assigned to human chromosome 12 by Southern blot analysis of human X mouse somatic cell hybrid DNA. The gene was sublocalized to region 12q22----q24.1 by in situ hybridization, using a human histidase cDNA. The homologous locus in the mouse (Hal) was mapped to region 10C2----D1 by in situ hybridization, using a cell line from a mouse homozygous for a 1.10 Robertsonian translocation. These assignments extend the conserved syntenic region between human chromosome 12 and mouse chromosome 10 that includes the genes for phenylalanine hydroxylase, gamma interferon, peptidase, and citrate synthase. The localization of histidase to mouse chromosome 10 suggests that the histidase regulatory locus (Hsd) and the histidinemia mutation (his), which are both known to be on chromosome 10, may be alleles of the histidase structural gene locus.  相似文献   

5.
The mouse congenital polycystic kidney (cpk) mutation produces a condition that resembles human autosomal recessive polycystic kidney disease (ARPKD) in its pattern of inheritance, clinical progression, and histopathology. Inheritance of this mouse mutation in crosses segregating the Rb(12.14)8Rma translocation chromosome and various DNA markers of Chromosome 12 have localized cpk to a site near D12Nyu2, approximately 7 cM from the centromere of Chromosome 12. This result suggests that the homologous PKD2 gene should be localized to either human chromosome 2p23-p25 or chromosome 7q22-q31.  相似文献   

6.
The mouse congenital polycystic kidney (cpk) mutation produces a condition that resembles human autosomal recessive polycystic kidney disease (ARPKD) in its pattern of inheritance, clinical progression, and histopathology. Inheritance of this mouse mutation in crosses segregating the Rb(12.14)8Rma translocation chromosome and various DNA markers of Chromosome 12 have localized cpk to a site near D12Nyu2, approximately 7 cM from the centromere of Chromosome 12. This result suggests that the homologous PKD2 gene should be localized to either human chromosome 2p23-p25 or chromosome 7q22-q31.  相似文献   

7.
Chen W  Song MS  Napoli JL 《Gene》2002,294(1-2):141-146
We report cloning a cDNA that encodes a novel short-chain dehydrogenase/reductase, SDR-O, conserved in mouse, human and rat. Human and mouse liver express SDR-O (short-chain dehydrogenase/reductase-orphan) mRNA intensely. The mouse embryo expresses SDR-O mRNA as early as day seven. Human SDR-O localizes on chromosome 12; mouse SDR-O localizes on chromosome 10 with CRAD1, CRAD2 and RDH4. SDR-O shares highest amino acid similarity with rat RoDH1 and mouse RDH1 (69-70%), but does not have the retinol and 3alpha-hydroxysteroid dehydrogenase activity of either, nor is it active as a 17beta- or 11beta-hydroxysteroid dehydrogenase. Short-chain dehydrogenase/reductases catalyse the metabolism of ligands that bind with nuclear receptors: the occurrence of 'orphan' nuclear receptors may imply existence of 'orphan' SDR, suggesting that SDR-O may catalyse the metabolism of another class of nuclear receptor ligand. Alternatively, SDR-O may not have a catalytic function, but may regulate metabolism by binding substrates/products and/or by serving as a regulatory factor.  相似文献   

8.
The closely linked proline-rich protein (Prp) genes, coding for abundant salivary proteins, are located on distal mouse chromosome 6. They are part of a conserved linkage group that is represented on human chromosome 12p. Two other markers, Ea-10 and Es-12, that were previously unassigned to a chromosome are closely linked to Prp genes in the mouse.  相似文献   

9.
The gene coding for rat parathyroid hormone-like peptide (PTHLH) was previously assigned to rat chromosome 2 (Hendy et al., 1988). We reexamined this assignment. According to our results, the gene is on rat chromosome 4. Taking into account the known localizations of the KRAS2 (Kras-2) oncogene and the PTHLH gene, this assignment strongly suggests that a synteny group is conserved on rat chromosome 4, mouse chromosome 6, and human chromosome 12.  相似文献   

10.
The location of a gene encoding myelin basic protein in rat (MBP) and mouse (Mbp) was determined by in situ hybridization using the mouse Mbp cDNA labeled with biotin-11-dUTP as a specific probe. The localization of biotin signals in the mouse was found on Chromosome 18E2----3. The result is consistent with the previous report that the Mbp gene is located on the distal half of Chromosome 18. In the rat, the signals localized on chromosome 1p11----p12, suggesting homology between mouse Chromosome 18 and the short arm of rat chromosome 1.  相似文献   

11.
12.
To refine the linkage map of distal mouse Chromosome 12, we have identified DNA restriction fragment variants associated with a creatine kinase gene (Ck-3), the Akt proto-oncogene, an Abelson proviral integration site (D12N1), and the immunoglobulin heavy chain VH3609 variable region family (Igh-V36). The patterns of inheritance of these markers in backcross progeny and recombinant inbred mouse strains allowed their localization with respect to previously mapped genes to yield the linkage map: Aat-15.8 cM-Ck-3-0.9 cM-(Crip, Akt, Igh-C)-0.3 cM-(D12N1, Igh-V). This map confirms genetically the localization of the Igh-V gene complex distal to Igh-C on the chromosome. It differs from previous maps in placing D12N1 distal to Igh-C, and in suggesting that the Igh-V gene complex spans less than one centiMorgan (cM).Other DNA sequence variants detected with the creatine kinase probe allowed definition of four additional genetic loci: Ck-1 near Lmyc-1 on Chromosome 4; Ck-2 between Upg-1 and Hprt-ps1 (D17Rp10) on distal Chromosome 17; Ck-4 near Mpmv-17 and Mls-3 on Chromosome 16; and Ck-5 near Hba on Chromosome 11.  相似文献   

13.
S Ohno  M Babonits  F Wiener  J Spira  G Klein  M Potter 《Cell》1979,18(4):1001-1007
The karyotypes of pristane-induced mouse plasmacytomas were studied by G banding. Only primary tumors or early passage generations were analyzed. In contrast to murine T cell leukemias that showed a regular trisomy of chromosome 15, all plasmacytomas showed a consistent translocation of the distal part of chromosome 15 to either chromosome 6 [rcpT(6;15)] or 12 [T(12;15)]. The specific breakpoints were at 6C, 15D3/E ro D2/3 and 12F2. Early passage generations often showed a mixed population with two different translocations, suggesting polyclonal origin. Considered together with the known karyotypic features of murine and human lymphomas, these findings support the theory that the nonrandom chromosomal changes in lymphoproliferative malignancies are associated with the type of the target cell, rather than with the etiological agent. Moreover, the involvement of the chromosomes known to carry the heavy chain (12) and the light chain (6) determinants, respectively, raises the question of whether the translocations may be related to the DNA level rearrangements known to occur during the differentiation of normal plasma cells.  相似文献   

14.
The assignment of the gene encoding the alpha 2-macroglobulin receptor (A2MR), which was first described as the low-density lipoprotein receptor-related protein, was confirmed by nonisotopic and isotopic in situ hybridizations on normal human metaphases to the region 12q13-q14. The same human cDNA, which has 95% sequence identity with the mouse A2mr, was hybridized to metaphases containing the Robertsonian translocation Rb(6;15)1Ald. The mouse A2mr gene was assigned to chromosome 15 in the region B2-D1. This locus and other loci on mouse chromosome 15 have been shown to be homologous with loci on human chromosome 12q.  相似文献   

15.
Four human homeo box-containing cDNAs isolated from mRNA of an SV40-transformed human fibroblast cell line have been regionally localized on the human gene map. One cDNA clone, c10, was found to be nearly identical to the previously mapped Hox-2.1 gene at 17q21. A second cDNA clone, c1, which is 87% homologous to Hox-2.2 at the nucleotide level but is distinct from Hox-2.1 and Hox-2.2, also maps to this region of human chromosome 17 and is probably another member of the Hox-2 cluster of homeo box-containing genes. The third cDNA clone, c8, in which the homeo box is approximately 84% homologous to the mouse Hox-1.1 homeo box region on mouse chromosome 6, maps to chromosome region 12q12----12q13, a region that is involved in chromosome abnormalities in human seminomas and teratomas. The fourth cDNA clone, c13, whose homeo box is approximately 73% homologous to the Hox-2.2 homeo box sequence, is located at chromosome region 2q31----q37. The human homeo box-containing cluster of genes at chromosome region 17q21 is the human cognate of the mouse homeo box-containing gene cluster on mouse chromosome 11. Other mouse homeo box-containing genes of the Antennapedia class (class I) map to mouse chromosomes 6 (Hox-1, proximal to the IgK locus) and 15 (Hox-3). A mouse gene, En-1, with an engrailed-like homeo box (class II) and flanking region maps to mouse chromosome 1 (near the dominant hemimelia gene). Neither of the class I homeo box-containing genes--c8 and c13--maps to a region of obvious homology to chromosomal positions of the presently known mouse homeo box-containing genes.  相似文献   

16.
The aim of this study is to determine if the Odc1 gene, which encodes ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, is directly regulated by the androgen receptor (AR) in skeletal muscle myoblasts and if Odc1 regulates myoblast proliferation and differentiation. We previously showed that expression of Odc1 is decreased in muscle from AR knockout male mice. In this study, we show in vivo that Odc1 expression is also decreased >60% in muscle from male muscle-specific AR knockout mice. In normal muscle homeostasis, Odc1 expression is regulated by age and sex, reflecting testosterone levels, as muscle of adult male mice expresses high levels of Odc1 compared with age-matched females and younger males. In vitro, expression of Odc1 is 10- and 1.5-fold higher in proliferating mouse C(2)C(12) and human skeletal muscle myoblasts, respectively, than in differentiated myotubes. Dihydrotestosterone increases Odc1 levels 2.7- and 1.6-fold in skeletal muscle cell myoblasts after 12 and 24 h of treatment, respectively. Inhibition of ODC activity in C(2)C(12) myoblasts by α-difluoromethylornithine decreases myoblast number by 40% and 66% following 48 and 72 h of treatment, respectively. In contrast, overexpression of Odc1 in C(2)C(12) myoblasts results in a 27% increase in cell number vs. control when cells are grown under differentiation conditions for 96 h. This prolonged proliferation is associated with delayed differentiation, with reduced expression of the differentiation markers myogenin and Myf6 in Odc1-overexpressing cells. In conclusion, androgens act via the AR to upregulate Odc1 in skeletal muscle myoblasts, and Odc1 promotes myoblast proliferation and delays differentiation.  相似文献   

17.
The angiotensinogen gene is located on mouse chromosome 8   总被引:1,自引:0,他引:1  
We have recently identified a cis-acting genetic lesion affecting angiotensinogen gene expression in testis and salivary gland. Accordingly, the angiotensinogen gene was assigned to mouse chromosome 8 by screening a series of hybrid cell lines for retention of mouse angiotensinogen sequences by genomic Southern analysis. In AKXD recombinant inbred mice, the angiotensinogen gene is 2.4 +/- 1.8 centiMorgan from Rn7S-8,a 7S RNA gene located on chromosome 8 (Taylor, B.A., personal communication). However, the segregation of salivary and testicular angiotensinogen expression phenotypes into inbred mouse strains was not concordant with the known chromosome 8 proviruses Emv-2, Mtv-21, Xmv-12 or Xmv-26.  相似文献   

18.
Human salivary proline-rich protein genes on chromosome 12.   总被引:4,自引:3,他引:1  
A DNA probe (PRP1) for the proline-rich protein (PRP) genes was used to analyze the segregation of human PRP genes in human X mouse somatic cell hybrids. Endonuclease restriction analysis of 22 independent hybrid clones segregating human chromosomes demonstrated that PRP genes segregate with human chromosome 12 only and were therefore assigned to that chromosome. The PRP1 probe should prove useful for further mapping studies of human chromosome 12.  相似文献   

19.
Numerous proteins are cleaved or "shed" from their membrane-bound form. One such protein, tumour necrosis factor alpha (TNF-alpha), is synthesized as a type 2 transmembrane protein. Recently, a human protease responsible for this shedding, the TNF-alpha converting enzyme (TACE/ADAM17), was isolated. TACE/ADAM17 is a member of the adamalysin class of zinc-binding metalloproteases or ADAM (a disintegrin and metalloprotease). We report the isolation and characterization of the mouse TACE/ADAM17 cDNA and gene. Mouse TACE/ADAM17 has a 92% amino-acid identity with the human protein and was ubiquitously expressed. A recombinant form of the protease is found to cleave a peptide representing the cleavage site of precursor mouse TNF-alpha. An alternatively spliced form of mouse TACE/ADAM17 was found that would produce a soluble protein. The gene for TACE/ADAM17 is approximately 50 kb and contains 19 exons. Chromosomal mapping places TACE/ADAM17 on mouse chromosome 12 and human chromosome 2p25.  相似文献   

20.
A Pilz  H Moseley  J Peters  C Abbott 《Genomics》1992,12(4):715-719
The mapping of human chromosome 9 (HSA9) and mouse chromosome 2 (MMU2) has revealed a conserved syntenic region between the distal end of the long arm of chromosome 9 and proximal mouse chromosome 2. Two genes that map to human chromosome 9q34, gelsolin (GSN) and dopamine beta-hydroxylase (DBH), have not previously been located in the mouse. We have used an interspecific backcross to map each of these genes, by Southern blot analysis, to mouse chromosome 2. Gelsolin (Gsn) is tightly linked to the gene for complement component C5 (Hc), and dopamine beta-hydroxylase (Dbh) is just proximal to the Abelson leukemia virus oncogene (Abl) and alpha-spectrin 2 (Spna-2). The loci for gelsolin and dopamine beta-hydroxylase therefore form part of the conserved synteny between HSA9q and MMU2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号