首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have tested the hypothesis that the ciliary activity of epithelial cells from human nasal polyps is altered after infection with Chlamydia trachomatis. Ciliated epithelial cells from human nasal polyps were cultured and infected with C. trachomatis. The measurement of ciliary beating was based on a technique which enables one to monitor a fraction of a single ciliated cell. A marked decrease of ciliary beating frequency versus time was observed 24 h after infection with C. trachomatis. About 50% of the cilia of infected cells were paralysed 48 h post-infection. The potential effect of C. trachomatis infection on the physiological functions dependent on cilia is discussed.  相似文献   

2.
Cilia are small organelles protruding from the cell surface that beat synchronously, producing biological transport. Despite intense research for over a century, the mechanisms underlying ciliary beating are still not well understood. Even the nature of the cytosolic molecules required for spontaneous and stimulated beating is debatable. In an effort to resolve fundamental questions related to cilia beating, we developed a method that integrates the whole-cell mode of the patch-clamp technique with ciliary beat frequency measurements on a single cell. This method enables to control the composition of the intracellular solution while the cilia remain intact, thus providing a unique tool to simultaneously investigate the biochemical and physiological mechanism of ciliary beating. Thus far, we investigated whether the spontaneous and stimulated states of cilia beating are controlled by the same intracellular molecular mechanisms. It was found that: (a) MgATP was sufficient to support spontaneous beating. (b) Ca(2+) alone or Ca(2+)-calmodulin at concentrations as high as 1 microM could not alter ciliary beating. (c) In the absence of Ca(2+), cyclic nucleotides produced a moderate rise in ciliary beating while in the presence of Ca(2+) robust enhancement was observed. These results suggest that the axonemal machinery can function in at least two different modes.  相似文献   

3.
A model of a freely rotating exended scatterer is proposed to describe light scattering from beating cilia. Gaussian rotation frequency distributions, characterized by a mean angular frequency and a standard deviation, are introduced in order to simulate intensity autocorrelation functions and to fit the model to experimental data. Thus the ciliary beats are characterized by a mean beat frequency and a standard deviation of the beat frequency distribution. The standard deviation influences the damping of the intensity autocorrelation function of light scattered from cilia. The calculated intensity autocorrelation function shows a more prominent oscillating behaviour the smaller the standard deviation of the beat frequency. The validity of the model is supported by experimental data in two ways: 1) The model fits very well to experimental data in computer evaluations, 2) Neither the model nor information obtained from measurements are dependent on the measuring angle.The contents were presented in part at the 9th International Biophysics Congress in Jerusalem, Israel, August 23–28, 1987 Offprint requests to: P. Thyberg  相似文献   

4.
In the presence of 30% glycerol, the cilia of a permeabilized cell model from Paramecium exhibit dynamic orientation changes while displaying only a restricted cyclic beating with a very small amplitude. The direction of cilia under these conditions corresponds to the direction of the effective power stroke of cilia beating in the absence of glycerol, i.e., pointing posteriorly in the absence of Ca2+ and anteriorly at > 10(-6) M Ca2+. Ciliary reorientation toward the posterior in response to the removal of Ca2+ is particularly conspicuous; all the cilia become predominantly pointing to the posterior end all through their beating phases. Previous studies suggested that the effect of glycerol is caused through modification of cAMP-dependent protein phosphorylation. To determine whether glycerol in fact affects ciliary reorientation through changes in protein phosphorylation, here we examined protein phosphorylation in the axonemes. Glycerol stimulated cAMP-induced phosphorylation of 29-kDa and 65-kDa proteins. The stimulation of phosphorylation was found to be partly due to the inhibition of endogenous phosphodiesterase (PDE), and partly due to the inhibition of the dephosphorylation of the 29-kDa and 65-kDa phosphoproteins within the axoneme. Thus glycerol appears to cause predominant posterior orientation of cilia by stimulating cAMP-dependent phosphorylation on those proteins. In addition, glycerol appears to inhibit ciliary beating through inhibition of dynein ATPase.  相似文献   

5.
Automated measurement of ciliary beat frequency   总被引:1,自引:0,他引:1  
Measurements of ciliary beat frequency using video images are dependent on observer interpretation. To obtain objective estimates of ciliary beat frequency from video-image sequences, a computer-based method was developed. Regions of interest of video-image sequences were selected and digitized. Variations in numerical values representing light intensity resulting from cilia beating were extracted and analyzed using autocorrelation techniques. The ciliary beat frequencies obtained for 14 in vitro experiments on ciliated cells or epithelium from the frog palate (Rana catesbeiana) over the range of frequencies 2-25 Hz correlated well with independent observer measurements (r = 0.979). The addition of such computer-based methods to video observer-based systems allows more objective and efficient determinations of ciliary beat frequency.  相似文献   

6.
A ciliated protozoan, Halteria grandinella, swam backward rapidly with a migration distance per second attaining 100 times the cell size. This high swimming velocity was accompanied by a high frequency of ciliary beating. Recordings with a high-speed digital video (10(3) frames/s) revealed that the frequency during forward and backward swimming was, respectively, 105 +/- 10 Hz and 260 +/- 30 Hz. These frequencies are the highest among cilia and flagella reported to date. Electron microscopic observation of the ciliary structure confirmed normal 9 + 2 arrangements of the axoneme except that cilia for migration are bundled into membranelles. Ciliary beating of saponin-treated cells was reactivated by the addition of Mg2+ -ATP, although the beating amplitude was smaller than that of intact cells. Kinetic analysis of the ATP-dependent increase of beating frequency revealed that the maximal frequency in the presence of free Ca2+ and 0.9 microM Ca2+ was approximately 60 and 110 Hz, respectively. A possible mechanism to increase beating frequency with Ca2+ is discussed.  相似文献   

7.
The effects of cilium length on the dynamics of cilia motion were investigated by high-speed video microscopy of uniciliated mutants of the swimming alga, Chlamydomonas reinhardtii. Cells with short cilia were obtained by deciliating cells via pH shock and allowing cilia to reassemble for limited times. The frequency of cilia beating was estimated from the motion of the cell body and of the cilium. Key features of the ciliary waveform were quantified from polynomial curves fitted to the cilium in each image frame. Most notably, periodic beating did not emerge until the cilium reached a critical length between 2 and 4 μm. Surprisingly, in cells that exhibited periodic beating, the frequency of beating was similar for all lengths with only a slight decrease in frequency as length increased from 4 μm to the normal length of 10–12 μm. The waveform average curvature (rad/μm) was also conserved as the cilium grew. The mechanical metrics of ciliary propulsion (force, torque, and power) all increased in proportion to length. The mechanical efficiency of beating appeared to be maximal at the normal wild-type length of 10–12 μm. These quantitative features of ciliary behavior illuminate the biophysics of cilia motion and, in future studies, may help distinguish competing hypotheses of the underlying mechanism of oscillation.  相似文献   

8.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.  相似文献   

9.
Intensification of ciliary motility by extracellular ATP   总被引:3,自引:0,他引:3  
D Ovadyahu  D Eshel  Z Priel 《Biorheology》1988,25(3):489-501
Ciliary metachronism and motility were examined optically in tissue cultures from frog palate epithelium as a function of extracellular ATP concentration in the range of 10(-7)-10(-3) M. The main findings were: a) upon addition of ATP the metachronal wavelength increased by a factor of up to 2. b) the velocity of the metachronal wave increased by a factor of up to 5. c) the frequency of ciliary beating increased by a factor of up to 2-3, the increase being temperature insensitive in the range of 15 degrees C-25 degrees C. d) the area under the 1-second FFT spectrum decreased by a factor of up to 2.5. e) the energy of the metachronal wave is increased by a factor of up to 9.5. f) all the spectrum parameters are subject to influence by ATP, as also by ADP and AMP. However, there are pronounced differences in the various responses to them. Based on these findings, physical aspects of the rate increase of particle transport caused by addition of extracellular ATP are explained. A plausible overall chemical mechanism causing pronounced changes in ciliary motility is discussed.  相似文献   

10.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.  相似文献   

11.
Structural and functional disorders of pulmonary cilia may result from genetic disorders and acquired insults. A two-dimensional numerical model based on the immersed boundary method coupled with the projection method is used to study the flow physics of muco-ciliary transport of the human respiratory tract under various abnormalities of cilia. The effects of the cilia beat pattern (CBP), ciliary length, immotile cilia, beating amplitude and uncoordinated beating of cilia are investigated. As expected, the mucus velocity decreases as the beating amplitude reduces. The windscreen wiper motion and rigid planar motion, which are two abnormal CBPs owing to genetic disorders, greatly reduce or almost stop the mucus transport. If the ciliary length varies from its standard length, the mucus velocity would decrease. The mucus velocity decreases rather linearly if the number of uniformly distributed immotile cilia increases. The numerical results show that the mucus velocity would be further reduced marginally when the uniformly distributed immotile cilia are rearranged as a cluster of immotile cilia. Furthermore, if half of the cilia are immotile and uniformly distributed and motile cilia beat at reduced amplitude, the incoordination between the active motile cilia would not significantly affect the mucus velocity.  相似文献   

12.
Ciliary activity under normal conditions and under viscous load   总被引:1,自引:0,他引:1  
L Gheber  Z Priel 《Biorheology》1990,27(3-4):547-557
Ciliary metachronism and motility were examined optically in muco-ciliary tissue cultures from three different systems: a) frog's palate epithelium, b) frog's oesophagus, and c) human nasal polyps. In addition, lateral cilia of Mytilus edulis (water transporting cilia) were examined. It was revealed that the degree of synchronization between muco-ciliary systems is lower than that of water transporting cilia. There are no significant differences between different muco-ciliary systems, within the accuracy of our measurement although relatively large statistical ensembles were used. In addition the wavelength and wave direction of the metachronal wave was examined. All four systems exhibit similar wavelength. The metachronal parameters of muco-ciliary systems exhibit fluctuations (as was demonstrated by the degree of synchronization), however, the magnitude and repetitivity of these fluctuations, is dependent on the loading of the ciliary system. We have loaded the system by increasing the viscosity of the medium. Under viscous load the frequency of the beating decreased. The metachronal wavelength became longer and the metachronal coordination type more orthoplectic.  相似文献   

13.
A mathematical model is proposed to explain the dependence of the direction and the length of the metachronal wave on parameters that characterize the ciliary beat, the dimensions of the cilia, and the geometry of their arrangement on the ciliated surface. The metachronal wave is decomposed into two mutually perpendicular components, which are chosen in such a way that the direction of one of them is in the direction of the effective stroke. The magnitudes of the two components are determined by using the concept of the time of delay between adjacent cilia. The properties of the metachronal wave are then calculated as a function of the ciliary parameters. The results obtained with the present model predict that the direction of the wave propagation is strongly dependent on the type of metachronism in the direction of the effective stoke and the polarization in time and in space of the ciliary beat. The metachronal wavelength is found to depend on four parameters: the ciliary length, the angle of the arc projected on the cell surface by the ciliary tip during the recovery stroke, the degree of asymmetry of ciliary beat, and the portion of the cycle occupied by the pause. The metachronal wavelength is also found to be only weakly dependent on the ciliary frequency. At this stage there exists relatively little experimental information with which to characterize fully the metachronal properties of ciliary systems. Even when only partial information exists, the model allows prediction, to within a certain range, of the direction of the wave propagation. It also suggests a possible mechanism for the influence of changes in environmental conditions on wave direction and wavelength. In several cases in which full information does exist, good agreement between the experimental findings and the predictions of the model is found. According to this model it will be worthwhile to invest more effort in measuring the time and space polarization of ciliary beating and times of delay between cilia.  相似文献   

14.
The roles of somatic and oral cilia and solid particles during digestive vacuole (DV) formation in Paramecium multimicronucleatum were investigated using video-enhanced and immunofluorescence microscopy. Membrane incorporation into DVs was found to increase linearly with increasing particle concentration. The rate of discoidal vesicle transport to the cytopharynx was not affected by particles, showing that particles are not required for membrane trafficking to the cytopharynx. However, the presence of particles leads to an increased membrane fusion between the cytopharyngeal membrane and the discoidal vesicles. When live cells lost their somatic cilia on the left-ventral side anterior to the oral region due to deciliation, membrane incorporation into newly formed DVs was strongly inhibited. Using video-enhanced microscopy, latex beads were seen to be loaded along the quadrulus on the dorsal surface of the buccal cavity, but few beads were seen next to the dorsal and ventral peniculi. Particle sequestration into a pre-formed nascent digestive vacuole (NDV) was studied in Triton X-100-permeabilized cells whose ciliary beating was reactivated by the addition of Mg-ATP. Both beat frequency and the percentage of cells containing bead-labeled NDV were dependent on the Mg-ATP concentration: the higher the beat frequency, the higher the percentage of cells with a bead-labeled NDV. These results suggest that ciliary beating is probably the only mechanism required for particle accumulation in the NDV, while a coordinated beating of the somatic cilia on the left-ventral side anterior to the oral region as well as the quadrulus moves particles into the NDV. The beating of the peniculi may somehow prevent the backward flow of particles out of the NDV.  相似文献   

15.
Tissues from the pharynx of five representative species of the protochordates (subphylum Tunicata, the three classes Ascidiacea, Thaliacea and Appendicularia, and subphylum Cephalochordata) were examined in both thin sections and freeze-fracture replicas. In all species, the stigmatal cilia of the branchial chamber are neatly arranged and move continuously to propel sea-water in a fixed direction for respiration and feeding of the organism. A number of specializations are found in the basal region of these cilia and are represented by: a) bridges connecting axonemal doublets numbers 5 and 6; b) dense fibrous material linking the doublet microtubules of the axoneme to the ciliary membrane, sometimes in the shape of longitudinal strands or as clusters of filaments; c) intramembrane particles (IMPs) associated with the P-face of the membrane, often arranged in clusters evenly aligned along the ciliary shaft in relation to the underlying axonemal doublets. Ciliary specializations are distributed along the plane of the effective stroke of the beat in both the ascidian Botryllus schlosseri and in the thaliacean Pyrosoma atlanticum and the amphioxus Branchiostoma lanceolatum, whereas in the thaliacean Doliolum nationalis and the appendicularian Oikopleura dioica a more uniform distribution of these specializations all around the basal portion of the cilia is observed. Whatever the disposition of the ciliary specializations in all the examined species, they are always present at the base of the water-propelling cilia. Some morphological evidence suggests that these specializations play a mechanical function in tethering the ciliary membrane to the axoneme. We propose that they help maintain the orientation of the cilia during beating, enhance their stiffness and improve their efficiency.  相似文献   

16.
Primary cultures of respiratory epithelium were produced as outgrowths from human fetal and adult tracheal and nasal polyp explants. Video recordings of the epithelial cell outgrowths were carried out after 5 days of culture and the ciliary beating frequency was analyzed by using a video technique. Uniform fields of differentiated ciliated cells were observed near the edge of the explant. In the transition region of the outgrowth from the explant to the outgrowth periphery, isolated ciliated cells were present, as well as cells with fused cilia. The ciliary beating frequency of the outgrowth of well-differentiated ciliated cells (13.5 +/- 1.4 Hz) was significantly higher (p less than 0.001) than the beating frequency of both the explant (11.9 +/- 0.7 Hz) and the ciliated cells with fused cilia (9.8 +/- 1.7 Hz). The same differentiation stages and functional activities were observed in the outgrowth cultures, whatever their origin. These in vitro models are comparable with each other and therefore could be useful for studying the ciliogenesis and functional activity of the human respiratory epithelium.  相似文献   

17.
Lateral cilia of the gill of Mytilus edulis are controlled by a reciprocal serotonergic-dopaminergic innervation from their ganglia. Other bivalves have been studied to lesser degrees and lateral cilia of most respond to serotonin and dopamine when applied directly to the gill indicating a possible neuro or endocrine mechanism. Lateral cilia in Crassostrea virginica are affected by serotonin and dopamine, but little work has been done regarding ganglionic control of their cilia. We examined the role of the cerebral and visceral ganglia in innervating the lateral ciliated cells of the gill epithelium of C. virginica. Ciliary beating rates were measured in preparations which had the ipsilateral cerebral or visceral ganglia attached. Superfusion of the cerebral or visceral ganglia with serotonin increased ciliary beating rates which was antagonized by pretreating with methysergide. Superfusion with dopamine decreased beating rates and was antagonized by ergonovine. This study demonstrates there is a reciprocal serotonergic-dopaminergic innervation of the lateral ciliated cells, similar to that of M. edulis, originating in the cerebral and visceral ganglia of the animal and this preparation is a useful model to study regulatory mechanisms of ciliary activity as well as the pharmacology of drugs affecting biogenic amines in nervous systems.  相似文献   

18.
With an instrument that can record the motion of both cilia of the unicellular alga Chlamydomonas reinhardtii for many hours, the behavioral differences of its two cilia have been studied to determine their specific role in phototaxis. The organism was held on a fixed micropipette with the plane of ciliary beating rotated into the imaging plane of a quadrant photodetector. The responses to square-wave light patterns of a wide range of temporal frequencies were used to characterize the responses of each cilium. Eighty-one cells were examined showing an unexpectedly diverse range of responses. Plausible common signals for the linear and nonlinear signals from the cell body are suggested. Three independent ciliary measures--the beat frequency, stroke velocity, and phasing of the two cilia--have been identified. The cell body communicates to the cilia the direction of phototaxis the cell desires to go, the absolute light intensity, and the appropriate graded transient response for tracking the light source. The complexity revealed by each measure of the ciliary response indicates many independent variables are involved in the net phototactic response. In spite of their morphological similarity, the two cilia of Chlamydomonas respond uniquely. Probably the signals from the cell body fan out to independent pathways in the cilia. Each cilium modifies the input in its own way. The change in the pattern of the effective and recovery strokes of each cilium associated with negative phototaxis has been demonstrated and its involvement in phototactic turning is described.  相似文献   

19.
The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia.  相似文献   

20.
The beating cilia play a key role in lung mucociliary transport. The ciliary beating frequency (CBF) and ciliary bend amplitude (CBA) of isolated mouse bronchiolar ciliary cells were measured using a light microscope equipped with a high-speed camera (500 Hz). Procaterol (aβ(2)-agonist) increased CBA and CBF in a dose dependent manner via cAMP. The time course of CBA increase is distinct from that of CBF increase: procaterol at 10 nM first increased CBA and then CBF. Moreover, 10 pM procaterol increased CBA, not CBF, whereas 10 nM procaterol increased both CBA and CBF. Concentration-response studies of procaterol demonstrated that the CBA curve was shifted to a lower concentration than the CBF curve, which suggests that CBA regulation is different from CBF regulation. Measurements of microbead movements on the bronchiole of lung slices revealed that 10 pM procaterol increased the rate of ciliary transport by 37% and 10 nM procaterol increased it by 70%. In conclusion, we have shown that increased CBA is of particular importance for increasing the bronchiolar ciliary transport rate, although CBF also plays a role in increasing it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号