首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA是遗传信息的载体,需要有极高的保真度,这不仅有赖于完善的复制体系,而且还需要有能纠正已存在错误的修复系统。对于不同的DNA损伤,生物体内存在许多不同的修复系统。本文介绍三种主要修复系统即核苷酸切割修复,错配修复及转录偶联修复的分子机制,深入研究DNA修复作用对了解某些癌症成因及细胞衰老等过程有重要意义 。  相似文献   

2.
3.
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.  相似文献   

4.
5.
Camenisch U  Dip R  Vitanescu M  Naegeli H 《DNA Repair》2007,6(12):1819-1828
The presumed DNA-binding cleft of xeroderma pigmentosum group A (XPA) protein, a key regulatory subunit of the eukaryotic nucleotide excision repair complex, displays a distinctive array of 6 positively charged amino acid side chains. Here, the molecular function of these closely spaced electropositive residues has been tested by systematic site-directed mutagenesis. After the introduction of single amino acid substitutions, the mutants were probed for protein-DNA interactions in electrophoretic mobility shift and photochemical crosslinking assays. This analysis led to the identification of a critical hot-spot for DNA substrate recognition composed of two neighboring lysines at codons 141 and 179 of the human XPA sequence. The replacement of other basic side chains in the DNA interaction domain conferred more moderate defects of substrate binding. When the function of XPA was tested as a fusion product with either mCherry or green-fluorescent protein, a glutamate substitution of one of the positively charged residues at positions 141 and 179 was sufficient to decrease DNA repair activity in human fibroblasts. Thus, the removal of a single cationic side chain abolished DNA-binding activity and significant excision repair defects could be induced by single charge inversions on the XPA surface, indicating that this molecular sensor participates in substrate recognition by monitoring the electrostatic potential of distorted DNA repair sites.  相似文献   

6.
Neisseria meningitidis, or the meningococcus, is the source of significant morbidity and mortality in humans worldwide. Even though mutability has been linked to the occurrence of outbreaks of epidemic disease, meningococcal DNA repair pathways are poorly delineated. For the first time, a collection of meningococcal disease-associated isolates has been demonstrated to express constitutively the DNA glycosylases MutY and Fpg in vivo. DNA sequence analysis showed considerable variability in the deduced amino acid sequences of MutS and Fpg, while MutY and RecA were highly conserved. Interestingly, multi-locus sequence typing demonstrated a putative link between the pattern of amino acid substitutions and levels of spontaneous mutagenicity in meningococcal strains. These results provide a basis for further studies aimed at resolving the genotype/phenotype relationships of meningococcal genome variability and mutator activity.  相似文献   

7.
DNA损伤修复机制——解读2015年诺贝尔化学奖   总被引:1,自引:0,他引:1  
Tomas Lindahl, Paul Modrich和Aziz Sancar三位科学家因发现“DNA损伤修复机制”获得了2015年诺贝尔化学奖.Lindahl首次发现Escherichia Coli中参与碱基切除修复的第一个蛋白质--尿嘧啶 DNA糖基化酶(UNG); Modrich重建了错配修复的体外系统,从大肠杆菌到哺乳动物深入探究了错配修复的机制; Sancar利用纯化的UvrA、UvrB、UvrC重建了核苷酸切除修复的关键步骤,阐述了核苷酸切除修复的分子机制.DNA损伤是由生物所处体外环境和体内因素共同导致的,面对不同种类的损伤,机体启动多种不同的修复机制修复损伤,保护基因组稳定性.这些修复机制包括:光修复(light repairing);核苷酸切除修复(nucleotide excision repair, NER);碱基切除修复(base excision repair, BER);错配修复(mismatch repair, MMR);以及DNA双链断裂修复(DNA double strand breaks repair, DSBR).其中DNA双链断裂修复又分同源重组(homologous recombination, HR)和非同源末端连接(non homologous end joining, NHEJ)两种方式.本文将对上述几种修复的机制进行总结与讨论.  相似文献   

8.
9.
10.
Comet assay with nuclear extract incubation   总被引:6,自引:0,他引:6  
Alkaline comet assay is a simple sensitive method for detecting DNA strand breaks. However, at the time of cell lysis, only a fraction of the entire DNA damage appears as DNA strand breaks, while some DNA strand breaks may have been rejoined and some DNA lesions may still remain unexcised. We showed that nuclear extract (NE) prepared from human cells could excise the DNA adducts induced by UVC, X-ray, and methyl methanesulfonate (MMS). Thus, the comet assay with NE incubation allows a closer estimation of total DNA damage. Among the human urothelial carcinoma cell lines we tested, the NE of NTUB1 cells showed higher activity in excising the DNA adducts induced by UVC, but with a lower activity in excising the DNA adducts induced by MMS than the NE of BFTC905 cells. Moreover, under the same dose of X-ray irradiation, a larger difference in total DNA damage between two cell lines was revealed in comet assay incubated with NE than without NE. Therefore, the comet assay with NE incubation may be useful in the research of cancer risk, drug resistance, and DNA repair proteins.  相似文献   

11.
12.
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic “active” DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that “pruning” of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.  相似文献   

13.
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion.  相似文献   

14.
The discovery of nucleotide excision repair in 1964 showed that DNA could be repaired by a mechanism that removed the damaged section of a strand and replaced it accurately by using the remaining intact strand as the template. This result showed that DNA could be actively metabolized in a process that had no precedent. In 1968, experiments describing postreplication repair, a process dependent on homologous recombination, were reported. The authors of these papers were either at Yale University or had prior Yale connections. Here we recount some of the events leading to these discoveries and consider the impact on further research at Yale and elsewhere.  相似文献   

15.
DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance.  相似文献   

16.
<正>2015年诺贝尔化学奖授予瑞典出生的托马斯·林达尔(Tomas Lindahl)、美国人保罗·莫里奇(Paul Modrich)和土耳其出生的阿齐兹·桑卡尔(Aziz Sancar),以奖励他们在"DNA修复机制研究"中的杰出贡献.2015年拉斯克基础医学研究奖虽然也奖给DNA损伤修复主题,但获奖人却不同,授予了两位美国人伊夫林·威特金(Evelyn M.Witkin)和史蒂芬·埃利奇(Stephen J.Elledge),以奖励他们  相似文献   

17.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to study how a certain set of proteins recognizes DNA lesions in contest of a large excess of intact DNA. The review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. The main models of primary damage recognition and preincision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in light of the available data.  相似文献   

18.
The ability of human fibroblasts to repair bleomycin-damaged DNA was examined in vivo. Repair of the specific lesions caused by bleomycin (BLM) was investigated in normal cell strains as well as those isolated from patients with apparent DNA repair defects. The diseases ataxia telangiectasia (AT), Bloom syndrome (BS), Cockayne syndrome (CS), Fanconi anemia (FA), and xeroderma pigmentosum (XP) were those selected for study. The method used for studying the repair of DNA after BLM exposure was alkaline sucrose gradient centrifugation. After exposure to BLM, a fall in the molecular weight of DNA was observed, and after drug removal the DNA reformed rapidly to high molecular weight. The fall in molecular weight upon exposure to BLM was observed in all cells examined with the exception of some XP strains. Prelabeled cells from some XP complementation groups were found to have a higher percentage of low molecular weight DNA on alkaline gradients than did normal cells. This prelabeled low molecular weight DNA disappeared upon exposure to BLM.  相似文献   

19.
The ability to monitor and characterize DNA mismatch repair activity in various mammalian cells is important for understanding mechanisms involved in mutagenesis and tumorigenesis. Since mismatch repair proteins recognize mismatches containing both normal and chemically altered or damaged bases, in vitro assays must accommodate a variety of mismatches in different sequence contexts. Here we describe the construction of DNA mismatch substrates containing G:T or O6meG:T mismatches, the purification of recombinant native human MutSα (MSH2–MSH6) and MutLα (MLH1–PMS2) proteins, and in vitro mismatch repair and excision assays that can be adapted to study mismatch repair in nuclear extracts from mismatch repair proficient and deficient cells.  相似文献   

20.
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号