首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
BaSO(4) activated with various concentrations of Eu were prepared by solid-state reaction technique. Thermoluminescence (TL) and mechanoluminescence (ML) of γ-ray-irradiated BaSO(4):Eu(2)O(3) phosphors were recorded. In the TL glow curve of the phosphor a single peak at 170°C was observed. The TL of the phosphors were also recorded after deforming the phosphors by dropping a piston of mass 0.4 kg onto them with different impact velocities. TL intensity (after deformation) decreased with increasing the impact velocity. In the ML intensity vs time curve two peaks were observed. ML intensity increased with increasing impact velocity of the piston and the time corresponding to peak ML intensity shifted to a shorter time value. ML intensity decreased drastically when it was recorded after annealing the sample at 170°C. The BaSO(4) phosphors activated with 0.1 mol% of Eu(2)O(3) showed optimum TL and ML. The photoluminescence emission spectrum of the sample showed that Eu enters as Eu(2+) ion in host lattice.  相似文献   

3.
In this paper, europium‐doped strontium aluminate (SrAl2O4:Eu2+) phosphors were synthesized using a combustion method with urea as a fuel at 600°C. The phase structure, particle size, surface morphology and elemental analysis were studied using X‐ray diffractometry (XRD), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectra. The EDX and FTIR spectra confirm the elements present in the SrAl2O4:Eu2+ phosphor. The optical properties of SrAl2O4:Eu2+ phosphors were investigated by photoluminescence (PL) and mechanoluminescence (ML). The excitation and emission spectra showed a broad band with peaks at 337 and 515 nm, respectively. The ML intensities of SrAl2O4:Eu2+ phosphor increased proportionally with the increase in the height of the mechanical load, which suggests that this phosphor could be used in stress sensors. The CIE colour chromaticity diagram and ML spectra confirm that the SrAl2O4:Eu2+ phosphor emitted green coloured light. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The present paper reports the impulsive excitation of mechanoluminescence (ML) in Sr0.97Al2O4:Eu0.01,Dy0.02 nanophosphors prepared using a combustion technique. The phosphors are characterized using X‐ray powder diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM) and photoluminescence (PL). The XRD results show that the samples exhibit a monoclinic α‐phase in the crystal structure. The space group of SrAl2O4:Eu,Dy nanophosphors is monoclinic P21. The PL and ML spectra of SrAl2O4:Eu,Dy nanophosphors are excited using light with a wavelength of 365 nm and emission is found at 516 nm. The prepared nanophosphors exhibits an intense ML that can be seen in daylight with the naked eye. When a sample powder is deformed impulsively by the impact of a moving piston, the ML intensity initially increases linearly with time, attains a peak value, Im, at time tm, and then decreases with time. The peak ML intensity, Im, and total ML intensity, IT, increase linearly with applied pressure and impact velocity. The ML intensity decreases with successive impacts of load onto the phosphors, and the diminished ML intensity can be approximately recovered by UV irradiation. The activation energy using thermoluminescence is found to be 0.57 eV for SrAl2O4:Eu,Dy nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), and photo‐, thermo‐ and mechanoluminescence spectroscopic techniques. The phase structure of the sintered phosphor was an akermanite type structure, which belongs to tetragonal crystallography. The thermoluminescence properties of these phosphors were investigated and compared. Under ultraviolet light excitation, the emission spectra of both prepared phosphors were composed of a broad emission band peaking at 470 nm. When the Sr2MgSi2O7:Eu2+ phosphor was co‐doped with Dy3+, the photoluminescence (PL), afterglow and mechanoluminescence (ML) intensity were strongly enhanced. The decay graph indicated that both the sintered phosphors contained fast decay and slow decay processes. The ML intensities of Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ phosphors were increased proportionally with increasing impact velocity, a finding that suggests that these phosphors could be used as sensors to detect the stress of an object. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Europium (Eu)3+‐substituted La2Li0.5Al0.5O4 red emitting phosphors were prepared by a conventional high‐temperature solid‐state reaction method. Powder X‐ray diffraction, diffuse reflectance spectra and spectrofluorometry were used as vital characterizing tools for the phosphors. The Eu concentration dependence luminescence properties and Judd–Ofelt intensity parameters were investigated and calculated, respectively. All compositions showed an orange red emission (due to the magnetic and electric dipole transitions of the Eu3+ ion) with the appropriate Commission Internationale de l'Eclairage (CIE) colour gamut under near ultraviolet or blue ray light excitation. The calculated critical distance showed that the energy transfer occured between Eu to Eu via an exchange mechanism. The Eu1.4La0.6Li0.5Al0.5O4 composition showed the highest red emission intensity with CIE colour saturation compared with that of the commercial Eu‐activated yttrium oxysulfide red phosphor.  相似文献   

8.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In the present article we report europium‐doped strontium ortho‐silicates, namely Sr2SiO4:xEu3+ (x = 1.0, 1.5, 2.0, 2.5 or 3.0 mol%) phosphors, prepared by solid state reaction method. The crystal structures of the sintered phosphors were consistent with orthorhombic crystallography with a Pmna space group. The chemical compositions of the sintered phosphors were confirmed by energy dispersive X‐ray spectroscopy (EDS). Thermoluminescence (TL) kinetic parameters such as activation energy, order of kinetics and frequency factors were calculated by the peak shape method. Orange‐red emission originating from the 5D07FJ (J = 0, 1, 2, 3) transitions of Eu3+ ions could clearly be observed after samples were excited at 395 nm. The combination of these emissions constituted orange‐red light as indicated on the Commission Internationale de l'Eclairage (CIE) chromaticity diagram. Mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increasing impact velocity of the moving piston that suggests that these phosphors can also be used as sensors to detect the stress of an object. Thus, the present investigation indicates that the piezo‐electricity was responsible for producing ML in the prepared phosphor.  相似文献   

10.
A series of Ce3+ ion single‐doped Ca2Al2SiO7 phosphors was synthesized by a combustion‐assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3 h and their X‐ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV‐irradiation excitation, the TL and ML emission spectra of Ca2Al2SiO7:Ce3+ phosphor showed the characteristic emission of Ce3+ peaking at 400 nm (UV–violet) and originating from the Ce3+ transitions of 5d‐4f (2F5/2 and 2F7/2). The photoluminescence (PL) emission spectra for Ca2Al2SiO7:Ce3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca2Al2SiO7:Ce3+phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Long persistence phosphor CaAl4O7: Eu2+, Dy3+ were prepared by a combustion method. The phosphors were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), decay time measurement techniques and photoluminescence spectra (PL). The CaAl4O7: Eu2+, Dy3+ phosphor showed a broad blue emission, peaking at 445 nm when excited at 341 nm. Such a blue emission can be attributed to the intrinsic 4f → 5d transitions of Eu2+ in the host lattices. The lifetime decay curve of the Dy3+ co‐doped CaAl4O7: Eu2+ phosphor contains a fast decay component and another slow decay one. Surface morphology also has been studied by SEM. The calculated CIE colour chromaticity coordinates was (0.227, 043). We have also discussed a possible long‐persistent mechanism of CaAl4O7:Eu2+, Dy3+ phosphor. All the results indicate that this phosphor has promising potential for practical applications in the field of long‐lasting phosphors for the purposes of sign boards and defence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Di‐barium magnesium silicate phosphor doped with Eu2+ and Dy3+ was prepared using a solid‐state reaction technique under a reducing atmosphere. The sample underwent impulsive deformation by impact from a piston for mechanoluminescence (ML) investigations. The temporal ML characteristics of the phosphor were observed, which expressed a single sharp peak with a long decaying period. To investigate the luminescence centre responsible for the ML peak, the ML spectrum of the phosphor was also observed. The recorded ML spectrum was similar in shape and peak wavelength to the photoluminescence (PL) spectrum, which verifies the existence of a single emission centre due to the transition of Eu2+ ions, i.e. transitions from any of the sublevels of the 4f65d1 configuration to the 8S7/2 level of the 4f7 configuration. Decay rates for different impact velocities were also calculated using curve‐fitting techniques. The time of the ML peak and the rate of decay did not change significantly with respect to increasing impact velocity of the load and peak ML intensity varied linearly. The mechanism of the ML emission was also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co‐doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg‐free excitation, Ca6AlP5O20:Eu exhibited Eu2+ (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce3+ emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co‐activators of Ce3+ and Mn2+ ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce3+ → Eu2+ and Eu2+ → Mn2+, respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co‐doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Dy3+ and Eu3+ activated Ca3Y2Si3O12 phosphors were synthesized by the solid‐state synthesis method. The phosphors were characterized by X‐ray diffraction (XRD), mechanoluminescence (ML), thermoluminescence (TL) and photoluminescence (PL) to determine structure and luminescence. For ML glow curves, only one peak was observed, as only one type of luminescence centre was formed during irradiation. The Ca3Y2Si3O12:Dy3+ TL glow curve showed a single peak at 151.55°C and the Ca3Y2Si3O12:Eu3+ TL glow curve peaked at 323°C with a small peak at 192°C, indicating that two types of traps were activated. The trapping parameters for both the samples were calculated using Chen's peak shape method. Dy3+‐activated Ca3Y2Si3O12 showed emission at 482 and 574 nm when excited by a 351 nm excitation wavelength, whereas the Eu3+‐activated Ca3Y2Si3O12 phosphor PL emission spectra showed emission peaks at 613 nm, 591 nm, 580 nm when excited at 395 nm wavelength. When excited at 466 nm, prominent emission peaks were observed at their respective positions with very slight shifts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The present paper describes the synthesis of cerium‐doped barium magnesium aluminate phosphor by combustion method. The crystal structure of synthesized phosphor belongs to the P63/mmc space group and is related to the β‐alumina structure. The photoluminescence emission spectra exhibited a broad peak centered at 440 nm showing the Ce3+ emission. The thermoluminescence properties of phosphors under ultraviolet irradiation were investigated. The activation energy was calculated by Chen's empirical method. Fracto‐mechanoluminescence properties were also investigated. The phosphor showed mechanoluminescence (ML) properties without irradiation and the ML intensity increased linearly with the impact height of the moving piston. Therefore this compound may have a use as a damage sensor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
KBaPO4 luminescent powdered phosphors doped with rare earth elements (RE = Sm3+,Eu3+,Dy3+) were successfully synthesized using a wet chemical method to identify the most suitable phosphor for solid‐state lighting based on the measurement of their emission spectra at excitation wavelengths. The X‐ray diffraction pattern of the as‐prepared KBaPO4 was well matched with its standard JCPDS file no. 330996, indicating the formation of the desired compound. Scanning electron microscopy images revealed irregular morphology, the material crystallized particles aggregated and were non‐uniform with particle sizes ranging from 1 to 100 μm. Photoluminescence excitation and emission spectra clearly indicated that the phosphor containing the Sm3+‐activated KBaPO4 phosphors could be efficiently excited at 403 nm and exhibited an emission mainly including two wavelength peaks at 559 nm and 597 nm. The phosphor containing the Eu3+‐activated KBaPO4 phosphors could be efficiently excited at 396 nm and exhibited a bright red emission mainly including two wavelength peaks at 594 nm and 617 nm. The phosphor containing the Dy3+‐activated KBaPO4 phosphors could be efficiently excited at 349 nm and exhibited wavelength peaks at 474 nm and 570 nm.  相似文献   

18.
Zn‐doped CaTiO3:Eu3+ red phosphors for enhanced photoluminescence in white light‐emitting diodes (LEDs) were synthesized by a solid‐state method. The structure and morphology of the obtained phosphor samples were observed by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties. Photoluminescence test data showed that the Zn‐doped phosphor is excited efficiently by near‐ultraviolet (NUV) light at wavelengths around 398 nm and emits an intense red light with a broad peak around 616 nm corresponding to the 5D07F2 transition of Eu3+. The intensity of this phosphor emission is three times stronger than that without Zn‐doping. Furthermore, this phosphor has very good thermal stability, high color purity and a low sintered temperature, all of which suggest its potential as a promising red phosphor for white LEDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Eu2+‐doped Ba3Si6O12N2 phosphors were prepared successfully via a modified solid‐state diffusion method. The phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence measurements. These phosphors were effectively excited at 355 nm and an intense emission peaking in the range 480 nm to 525 nm in the blue region was observed. The optimized dopant concentration was determined to be 1 mol% of Eu2+ ion. The colour coordinates for phosphor were found to be (0.196, 0.326) in the blue region. This phosphor may find application for near‐ultraviolet (NUV) excited lamp phosphors. The thermoluminescence study shows the complex glow curve. Trapping parameters (activation energy and frequency factor) were calculated for individual deconvoluted peaks by Chen's peak shape method, the initial rise method and the whole glow peak method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号