首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and simple chemiluminescent (CL) method for the determination of clomipramine has been developed by combining the flow‐injection analysis (FIA) technique, which is based on the CL intensity generated from the redox reaction of potassium permanganate (KMnO4)–formic acid in sulphuric acid (H2SO4) medium. Under the optimum conditions, the linear range for the determination of clomipramine was 0.04–4 µg/mL, with a correlation coefficient of 0.9988 (n = 10) and a detection limit of 0.008 µg/mL (3σ), and the relative standard deviation (RSD) for 2.0 µg/mL clomipramine (n = 11) is 1.26%. The proposed method has been successfully applied to the determination of the studied clomipramine in pharmaceutical preparations. The possible reaction mechanism is discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4‐chloro‐(2′‐hydroxylophenylazo)rhodanine–Ti(IV) [ClHARP–Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2‐ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and γ‐globin (γ‐G) were studied. The detection limits were 0.182 µg/mL for BSA, 0.0788 µg/mL for HSA, 0.216 µg/mL for Ova and 0.484 µg/mL for γ‐G. The linear ranges of the calibration were 0–12.0, 0–10.0, 0–18.0 and 0–18.0 µg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Vanillic acid (VA) is a phenolic acid, and acts as a natural antioxidant in fruits, vegetables and plants. The extraction and determination of trace levels of VA in plants is important, because stimulation of protein synthesis and activation of antioxidant enzymes occur in the presence of phenolic acids at trace levels. In this research, a photoluminescence spectroscopic method was developed for the quantification of VA in plant samples after separation and pre‐concentration. Selective extraction of VA from aqueous solution was performed using a solid‐phase extraction column packed with nickel–aluminum layered double hydroxide as a nano‐sorbent. After elution of extracted analyte from the column using 3 mL of a 3 mol/L NaOH solution, its concentration was determined spectrofluorometrically at λem = 357 nm with excitation at λex = 280 nm. The spectrofluorometry method gave a linear response for VA within the range 20.0–900.0 µg/L, with a correlation coefficient of 0.9982. The limit of detection and sorption capacity were 7.6 µg/L and 66.2 mg/g, respectively. The method was validated by comparing the obtained results with gas chromatographic data. This method was used to determine VA in Chenopodium album and Prangos asperula plants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and rapid capillary electrophoresis (CE) with an acidic potassium permanganate chemiluminescence (CL) detection method was developed to determine three alkaloids (curine, sinomenine and magnoflorine) simultaneously. A laboratory‐built CE–CL detection interface was used. The field‐amplified sample stacking technique was applied to the online concentration of alkaloids. Experimental conditions for CE separation and CL detection were investigated in detail to acquire optimum conditions. Under optimal conditions, the three alkaloids were baseline separated within 6 min, and the detection limits (S/N = 3) ranged from 0.03 µg/mL to 0.49 µg/mL. This method was successfully applied to determine the above three alkaloids in Sinomenium acutum, and the result of the determination of sinomenine was in good agreement with those given by high‐performance liquid chromatography and CE methods. In addition, a possible CL reaction mechanism of sinomenine–KMnO4–H2SO4 was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10–phenanthroline)ruthenium(II)–Na2SO3–permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10–phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na2SO3 is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05–10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
An enhanced thiosemicarbazide(TSC)–H2O2 chemiluminescence (CL) system was established and proposed as a new analytical method for determination of β‐lactam antibiotics, ampicillin sodium and amoxicillin at microgram levels. The method is based on the inhibition of CL emission accompanying oxidation of TSC by H2O2 in alkaline medium. The effect of anionic, cationic, and non‐ionic surfactants on the CL emission of the system was studied. Both N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB) and Triton X‐100, unlike sodium dodecyl sulfate (SDS), reinforced the CL intensity and were efficient to approximately the same level. The effect of the presence of eight non‐aqueous solvents on the CL system was also investigated. Upon addition of both of the non‐ionic surfactant, Triton X‐100, and the non‐aqueous solvent, N,N‐dimethyl formamide (DMF), the intensity of the CL reaction was increased 100‐fold. This method allows the measurement of 25–545 µg amoxicillin, and 35–350 µg ampicillin sodium. The detection limits are 8 µg for amoxicillin and 9 µg for ampicillin sodium. The relative standard deviations of six replicate measurements of 200 µg amoxicillin and 200 µg ampicillin sodium were 1.9 and 2.1%, respectively. The effect of foreign species on the determination of amoxicillin and ampicillin sodium was also examined. The proposed method was successfully applied to the determination of ampicillin sodium and amoxicillin in some pharmaceutical dosage forms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A sensitive flow‐injection chemiluminescence method for the determination of acetylsalicylic acid is described. It is based on the enhanced chemiluminescent emission of the alkaline lucigenin–H2O2 system by acetylsalicylic acid. The difference in chemiluminescent intensity of alkaline lucigenin–H2O2 in the presence of acetylsalicylic acid from that in the absence of acetylsalicylic acid was linear at acetylsalicylic acid concentrations in the range of 0.0029–47.37 µg/mL, with detection and quantification limits of 0.0011 and 0.0029 µg/mL, respectively. The correlation coefficient of the working curve was 0.9983. The relative standard deviation (n = 10) for 25 µg/mL acetylsalicylic acid is 1.95%. All experimental parameters were optimized. The method was successfully applied to the determination of acetylsalicylic acid in pharmaceutical preparations. The recovery results obtained by the method were satisfactory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, sensitive and rapid HPLC method with fluorescence detection for the determination of dimethyl‐4,4′‐dimethoxy‐5,6,5′,6′‐dimethylene dioxybiphenyl‐2,2′‐dicarboxylate (DDB) in the raw material and pill form was developed. Liquid chromatography was performed on a C18 column (250 × 4.6 mm i.d., 5 µm particle size), the mobile phase consisted of methanol and 0.05 M sodium dihydrogen phosphate buffer (80 : 20, v/v), and the apparent pH of the mobile phase was adjusted to 3. The fluorescence detector was operated at excitation/emission wavelengths of 275/400 nm. The proposed method allows the determination of DDB within concentration range 0.1–1.5 µg/mL with a limit of detection of 0.032 µg/mL, a limit of quantification of 0.097 µg/mL and a correlation coefficient of 0.9997. The proposed method has been successfully applied for the analysis of DDB in its pills with a percentage recovery of 98.45 ± 0.32. The method was fully validated according to ICH guidelines. Moreover, the high sensitivity of the method permits its use in an in vitro dissolution test for DDB under simulated intestinal conditions. In addition, the proposed method was extended to a content uniformity test according to USP guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Advanced glycation end‐products (AGEs), epidermal growth factor receptor (EGFR), reactive oxygen species (ROS), and extracellular signal‐regulated kinases (ERK) are implicated in diabetic nephropathy (DN). Therefore, we asked if AGEs‐induced ERK protein phosphorylation and mitogenesis are dependent on the receptor for AGEs (RAGE)–ROS–EGFR pathway in normal rat kidney interstitial fibroblast (NRK‐49F) cells. We found that AGEs (100 µg/ml) activated EGFR and ERK1/2, which was attenuated by RAGE short‐hairpin RNA (shRNA). AGEs also increased RAGE protein and intracellular ROS levels while RAGE shRNA and N‐acetylcysteine (NAC) attenuated AGEs‐induced intracellular ROS. Hydrogen peroxide (5–25 µM) increased RAGE protein level while activating both EGFR and ERK1/2. Low‐dose hydrogen peroxide (5 µM) increased whereas high‐dose hydrogen peroxide (100 µM) decreased mitogenesis at 3 days. AGEs‐activated EGFR and ERK1/2 were attenuated by an anti‐oxidant (NAC) and an EGFR inhibitor (Iressa). Moreover, AGEs‐induced mitogenesis was attenuated by RAGE shRNA, NAC, Iressa, and an ERK1/2 inhibitor (PD98059). In conclusion, it was found that AGEs‐induced mitogenesis is dependent on the RAGE–ROS–EGFR–ERK1/2 pathway whereas AGEs‐activated ERK1/2 is dependent on the RAGE–ROS–EGFR pathway in NRK‐49F cells. J. Cell. Biochem. 109: 38–48, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin‐catalyzed reaction of H2O2 and l ‐tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0/F) and the concentration of selenium within the range of 0.16‐4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se‐enriched garlic bulbs with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Human leukemic THP‐1 promonocytes are widely used as a model for peripheral blood monocytes. However, superoxide production during respiratory burst (RB) of non‐differentiated THP‐1 (nd‐THP‐1) cells is very low. Here we present a rapid and low‐cost method for measuring the chemiluminescence (CL) of opsonized zymosan (OZ) induced RB which allows detection of Escherichia coli lipopolysaccharide (LPS) induced priming of nd‐THP‐1 cells on the basis of CL reaction kinetics. Maximum CL intensity obtained was 2.20 ± 0.25 and 1.30 ± 0.11 relative light units, while CL peak time was achieved at 18.1 ± 2.6 and 28.7 ± 1.3 min in primed and non‐primed cells, respectively. The priming of nd‐THP‐1 cells with LPS evoked typical TNF‐α and IL‐6 production. We tested the effects of bovine lactoferrin and protein fractions from Lactobacillus helveticus BGRA43 fermented milk for potential anti‐inflammatory effects on LPS primed nd‐THP‐1 cells. Four fractions were found to inhibit the OZ‐induced CL in a dose‐dependent manner (IC50 3–30 µg/mL), while lactoferrin inhibited CL to a lesser extent (IC50 270 µg/mL). These results suggest that measuring CL response of nd‐THP‐1 cells can serve as a method for screening anti‐inflammatory compounds which could be used in reducing the risk of phagocyte‐mediated inflammatory diseases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A flow‐injection (FI) method is reported for the determination of Mn(II), maneb and mancozeb fungicides based on the catalytic effect of Mn(II) on the oxidation of lucigenin and dissolved oxygen in a basic solution. The Tween‐20 surfactant has been reported for first time to enhance lucigenin chemiluminescence (CL) intensity in the presence of Mn(II) (53%) and maneb and mancozeb (89%). The calibration graphs were linear in the concentration range of 0.001–1.5 mg L–1 (R2 = 0.9982 (n = 11) with a limit of detection (S/N = 3) of 0.1 µg L–1 for Mn(II) and 0.01–3.0 mg L–1 [R2 = 0.9989 and R2 = 0.9992 (n = 6)] with a limit of detection (S/N =3) of 1.0 µg L–1 for maneb and mancozeb respectively. Injection throughputs of 90 and 120 h–1 for Mn(II) and maneb and mancozeb respectively, and relative standard deviations of 1.0–3.4% were obtained in the concentration range studied. The experimental variables, e.g., reagents concentrations, flow rates, sample volume, and photomultiplier tube voltage, were optimized and potential interferences were investigated. The analysis of Mn(II) in river water reference materials (SLRS‐4 and SLRS‐5) showed good agreement with the certified values incorporating an on‐line 8‐hydroxyquinoline chelating column in the manifold for removing interfering metal ions. Recoveries for maneb and mancozeb were in the range of 92 ± 5 to 104 ± 3% and 91 ± 2 to 100 ± 4% (n = 3) respectively. The effect of 30 other pesticides (fungicides, herbicides and insecticides) was also examined in the lucigenin–Tween‐20 CL system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A new fluorescent probe, 4‐N,N‐di(2‐hydroxyethyl)imino‐7‐nitrobenzo‐2‐oxa‐1,3‐diazole (HINBD) was synthesized in a single step with reasonably good yield. The water‐soluble HINBD emits strongly in the visible region (λex = 479 nm, λem = 545 nm) and is stable over a wide range of pH values. It was found that vitamin B12 (VB12) had the ability to quench the fluorescence of HINBD, and the quenched fluorescence intensity was proportional to the concentration of VB12. A method for VB12 determination based on the quenching fluorescence of HINBD was thus established. Interference effects of various substances, including sugars, vitamins, amino acids, inorganic cations and some organic substances have been studied. Under optimal conditions, the linear range is 0.0–2.4 × 10–5 mol/L. The determination limit is 8.3 × 10–8 mol/L. The method was applied to measure VB12 in pharmaceutical preparations with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A highly sensitive and selective method for the determination of cholesterol is required to evaluate trace amounts of cholesterol in test samples. In this work, selected gold nanoparticles (AuNPs) and 5‐amino‐2‐mercapto‐1,3,4‐thiadiazole (AMT) were used and a thin film of three‐dimensional gold–AMT core–shell nanoparticles (p‐AMT–AuNPs) was prepared using an electrochemical method. Cholesterol oxidase was then bonded to the film surface to give a functional electrode. Based on catalysis by the electrode functionalized for cholesterol and a luminol–H2O2 electrochemiluminescence (ECL) system, a highly sensitive and selective ECL method was developed for the determination of cholesterol. Under optimized conditions, ECL intensity showed a good linear relationship with cholesterol over the concentration range 0.05–11.0 µg/ml, with a correlation coefficient of 0.999 and a limit of detection of 0.02 µg/ml. The proposed method was used to determine cholesterol in dairy products with a relative standard deviation of < 1.8% and recovery rates of 98.1–104%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Amino‐modified silica nanoparticles (FSNPs) doped with fluorescein isothiocyanate (FITC) were synthesized by using an aqueous core of reverse‐micelle microemulsion as the nanoreactor in an easy one‐pot method. Due to the FITC conjugating with (3‐aminopropyl)triethoxysilane (APTS), the nanoparticles prevent the FITC from leaching from the silica matrix when immersed in aqueous solution. SEM, FTIR, fluorescence lifetime, a photobleaching experiment and synchronous fluorescence spectra were used to characterize the FSNPs. The synchronous fluorescence signal of FSNPs was enhanced when trace amounts of γ‐globulin (γ‐G) were added. Under the optimal experimental conditions, the enhanced fluorescence intensity (ΔF) was linear with the concentration of γ‐G (c) in the range 0.3–4.8 µg/mL, with a detection limit of 0.04 µg/mL. The proposed method is simple, sensitive for the determination of trace amounts of γ‐G and used to determine the content of γ‐G in synthetic samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Introduction – Mullein (Verbascum) flowers are highly valued herbal drugs used in the treatment of inflammation, asthma, spasmodic coughs and other respiratory tract diseases. Their phenolic constituents are considered to be responsible for the anti‐inflammatory and antimicrobial activity of the herb. However, knowledge about the contents of phenolics in flowers is limited and no HPLC method for their analysis is available. Objective – To develop and validate an RP‐HPLC‐UV method for the simultaneous determination of eight flavonoids and two phenylethanoids in the flowers of Verbascum densiflorum and V. phlomoides. Methodology – HPLC separation was accomplished on a C18 Lichrosphere 100 column (5 µm, 250 mm × 4.6 mm, i.d.) with an acetonitrile gradient elution using aqueous 0.5% (w/v) orthophosphoric acid solution containing 1% (v/v) tetrahydrofurane. Results – All the calibration curves showed good linear correlation coefficients (r > 0.997) over the wide test ranges. The relative standard deviation of the method was less than 3.4% for intra‐ and inter‐day assays, and the average recoveries were between 93.5 and 101.9%. High sensitivity was demonstrated with detection limits of 0.062–0.083 µg/mL for flavonoid aglycones, 0.156–0.336 µg/mL for flavonoid glycosides and 0.390–0.555 µg/mL for phenylethanoids. The flower samples of V. phlomoides were found to contain high levels of diosmin and tamarixetin 7‐rutinoside (2.327–2.392% of dry weight), whereas verbascoside (0.688–0.742% of dry weight) and luteolin 7‐glucoside (0.204–0.279% of dry weight) dominated in the V. densiflorum flower. Conclusion – The HPLC method established is appropriate for the quality assurance and the differentiation of V. phlomoides and V. densiflorum samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
M. M. Tolba 《Luminescence》2014,29(7):738-748
A simple and sensitive high‐performance liquid chromatography method was developed and validated for the determination of calcium dobesilate (DOB) or ethamsylate (ETM) in the presence of their degradation product, hydroquinone (HQ). The analyses were carried out on Promosil C18 column (4.6 mm × 250 mm, 5 µm particle size) using an ion‐pair mobile phase consisting of methanol–1.5 mm tetra‐butyl ammonium bromide in 0.06 m phosphate buffer (25 : 75, v/v) at pH 6.0 with fluorescence detection at 286/333 nm. Pindolol was used as an internal standard. The proposed method was found to be rectilinear over the concentration ranges of 0.05–0.5 µg/mL for DOB, 0.1–0.8 µg/mL for ETM and 0.005–0.1 µg/mL for HQ. The method was applied for the determination of the studied drugs in different dosage forms and biological fluids. The results of the proposed method were statistically compared with those obtained by the comparison methods revealing no significance differences in the performance of the methods regarding accuracy and precision. Moreover, applying a time‐programmed fluorescence technique was valuable for the detection of trace amounts of HQ as an impurity and allowed purity testing of ETM or DOB within the BP pharmacopeial limit (0.1%). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号