首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Living chick spinal ganglion neurons grown for 19 to 25 days in vitro were photographed with a color-translating ultraviolet microscope (UV-91) at 265, 287, and 310 mmicro. This instrument was unique in permitting rapid accumulation of ultraviolet information with minimal damage to the cell. In the photographs taken at 265 mmicro of the living neurons, discrete ultraviolet-absorbing cytoplasmic masses were observed which were found to be virtually unchanged in appearance after formalin fixation. These were identical with the Nissl bodies of the same cells seen after staining with basic dyes. The correlation of ultraviolet absorption, ribonuclease extraction, and staining experiments with acid and basic dyes confirmed the ribonucleoprotein nature of these Nissl bodies in the living and fixed cells. No change in distribution or concentration of ultraviolet-absorbing substance was observed in the first 12 ultraviolet photographs of a neuron, and it is concluded that the cells had not been subjected to significant ultraviolet damage during the period of photography. On the basis of these observations, as well as previous findings with phase contrast microscopy, it is concluded that Nissl bodies preexist in the living neuron as discrete aggregates containing high concentrations of nucleoprotein.  相似文献   

2.
Lysosomes of peritoneal macrophages, selectively pinpointed by aminoacridine-induced fluorescence, do not fuse with vacuoles containing viable Toxoplasma gondii RH strain.  相似文献   

3.
4.
Transfer of radioactive materials to fixed cells from an overlying layer of living cells has been examined to determine whether fixed cells can act as acceptors of glycosyltransferases of living cells. After the incubation of living cells were removed by EDTA treatment, and the radioactivity associated with the fixed cells was determined. Lipids, proteins and carbohydrates were found to be transfered from the living cells to the fixed cells. The amount of radioactivity transferred to the fixed cells was dependent on the number of both fixed and living cells and increased with the time of incubation. When fixed cells were treated with chloroform-methanol before the addition of living cells, the transfer of both lipids and proteins to the fixed cells decreased drastically, but only a slight decrease incarbohydrate transfer was observed. Most of the radioactive materials transferred from living cells labeled with glucosamine or fucose to chloroform-methanol-treated fixed cells were solubilized by trypsin but not by the detergents tested. Approximately 55% of the materials transferred from the cells labeled with glucosamine could be solubilized by hyaluronidase and chondroitinase, and the rest was solubilized by neuraminidase and a glycosidase mixture. The treatment of chloroform-methanol-extracted fixed cells with trypsin caused a significant decrease in the transfer from cells labeled with glucosamine. When nucleotide sugars were used as the radioactive precursor, no significant amount of radioactivity was transferred to the fixed cells.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
A simplified theory of image formation in phase contrast microscopy is presented. It is shown that the phase shift induced in light (related to the refractive index) by the observed object can be reconstructed, point by point, from the phase-contrast digitally sampled image through an appropriate algorithm. This allows one to make quantitative observations on unstained, living cells.  相似文献   

13.
A simplified theory of image formation in phase contrast microscopy is presented. It is shown that the phase shift induced in light (related to the refractive index) by the observed object can be reconstructed, point by point, from the phase-contrast digitally sampled image through an appropriate algorithm. This allows one to make quantitative observations on unstained, living cells.  相似文献   

14.
15.
Quantitative reflection contrast microscopy of living cells   总被引:9,自引:0,他引:9       下载免费PDF全文
Mammalian cells in culture (BHK-21, PtK2, Friend, human flia, and glioma cells) have been observed by reflection contrast microscopy. Images of cells photographed at two different wavelengths (546 and 436 nm) or at two different angles of incidence allowed discrimination between reflected light and light that was both reflected and modulated by interference. Interference is involved when a change in reflected intensity (relative to glass/medium background reflected intensity) occurs on changing either the illumination wavelength or the reflection incidence angle. In cases where interference occurs, refractive indices can be determined at points where the optical path difference is known, by solving the given interference equation. Where cells are at least 50 nm distant from the glass substrate, intensities are also influenced by that distance as well as by the light's angle of incidence and wavelength. The reflected intensity at the glass/medium interface is used as a standard in calculating the refractive index of the cortical cytoplasm. Refractive indices were found to be higher (1.38--1.40) at points of focal contact, where stress fibers terminate, than in areas of close contact (1.354--1.368). In areas of the cortical cytoplasm, between focal contacts, not adherent to the glass substrate, refractive indices between 1.353 and 1.368 were found. This was thought to result from a microfilamentous network within the cortical cytoplasm. Intimate attachment of cells to their substrate is assumed to be characterized by a lack of an intermediate layer of culture medium.  相似文献   

16.
17.
18.
19.
The distribution of actin in proteose peptone-elicited murine peritoneal macrophages is examined with fluorescent analog cytochemistry (FAC), immunofluorescence, and electron microscopy (EM). Living adherent macrophages, microinjected with 5- iodoacetamidofluorescence-labeled actin, show a rather uniform distribution of actin with punctuate and linear fluorescence in the thin peripheral areas of the cell. Apparent incorporation of a portion of linear fluorescence in the thin peripheral areas of the cell. Apparent incorporation of a portion of the microinjected actin into the cell’s actin cytoskeleton is also demonstrated when microinjected cells are subsequently examined for fluorescein fluorescence after fixation and extraction. However, a substantial perinuclear pool of actin, observed with FAC, is lost when microinjected cells are prepared for immunofluorescence using standard fixation methods. These results suggest that part of the cellular actin, possibly nonfilamentous or oligomeric, can be extracted during the normal preparative steps for immunofluorescence. When the dynamic distributin of actin structures is examined in living cells, extension of the cell’s periphery is associated with the formation of punctuate structures. The distribution of the most stable, nonextractable actin structures in fixed cells at different stages of spreading is quantified using rhodamine-labeled phalloidin and antiactin indirect immunofluorescence. At early stages, the rounded cells show cortical bands of fluorescence surrounding the nuclear region with punctuate structures directly above the plane of the attached plasma membrane. At later time periods, fully spread cells contain both punctuate and linear fluorescent structures. Adherent macrophage membranes, a preparation in which the attached membrane and membrane-cortex are isolated by shearing away the unattached plasma membrane and underlying cytoplasm, show punctuate and linear fluorescence when stained with rhodamine-labeled phalloidin. When the same cell remnant is negatively stained and examined with EM, the fluorescent punctuate structures coincide with electron-dense foci and associated radiating thin filaments. We suggest that the optimal approach for elucidating the distribution of cytoskeletal and contractile proteins involved in motile processes is a combined approach using all three techniques. Although each technique is subject to potential artifacts and limitations, the use of FAC can permit the visualization of both the soluble and stabilized components of the cytoskeleton in living, functional cells. A qualitative method for determining differences in local concentrations of proteins is also presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号