首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Incorporating the Gd3+ rare earth ion in the LiCaBO3 host lattice resulted in narrow‐band UV‐B emission peaking at 315 nm, with excitation at 274 nm. The LiCaBO3:Gd3+ phosphor was synthesized via the solid‐state diffusion method. The structural, morphological and luminescence properties of this phosphor were characterized by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. Electron paramagnetic resonance (EPR) characterization of the as‐prepared phosphors is also reported here. XRD studies confirmed the crystal formation and phase purity of the prepared phosphors. A series of different dopant concentrations was synthesized and the concentration‐quenching effect was studied. Critical energy transfer distance between activator ions was determined and the mechanism governing the concentration quenching is also reported in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Chlorosulphate NaMgSO4Cl phosphor doped with Ce3+ and co‐doped by Dy3+ prepared by the wet chemical method was studied for its photoluminescence and thermoluminescence (TL) characteristics. The emission spectrum of Ce3+ shows dominant peaks at 346 nm (excitation 270 nm) due to 5d → 4f transition. Efficient energy transfer occurs from Ce3+ → Dy3+ ions. Dy3+ emission at 485 nm and 576 nm is due to 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ion respectively. The TL glow curves of NaMgSO4Cl:Ce and Ce,Dy have been recorded for various concentrations at a heating rate of 2 °C/s irradiated by γ‐rays at a dose rate of 0.995 kGy/h for 1 Gy, which peaks at about 241 °C and 247‐312 °C respectively. Further, in changing the concentration level, the general structure of the intensity is found to increase. The main property of this phosphor is its sensitivity even for low concentrations of rare earth ions and low γ‐ray dose. There is still scope for higher doses of γ‐radiation. The phosphor presented may be used as a lamp phosphor as well as for TL studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
KMgSO4F:Ce and KMgSO4F:Mn phosphors were prepared by a wet chemical method and studied for their photoluminescence (PL) and thermoluminescence (TL) characteristics. PL emission of KMgSO4F:Ce peaked at around 440 nm for the excitation at 377 nm due to 5d → 4f transition, while KMgSO4F:Mn had a peak at 540 nm for an excitation at 363 nm and 247 nm due to 4T1g6A1g transition. The phosphors also showed good thermoluminescence characteristics when they were exposed to γ‐rays at a 5 Gy dose at the rate of 0.36 kGyh?1. KMgSO4F:Ce exhibited a single thermoluminescence (TL) peak at around 167 °C and KMgSO4F:Mn also exhibited a single TL peak at around 177 °C. Possible trapping parameters such as order of kinetics (b), the geometrical factor (μg), the frequency factor (s) and the activation energy were also evaluated by Chen's half width method. This article discusses fundamental PL and TL characteristics in inorganic fluoride material activated by Ce3+ and Mn2+ ions and prepared by a wet chemical method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
LiMgBO3:Dy3+, a low Zeff material was prepared using the solution combustion method and its luminescence properties were studied using X‐ray diffraction (XRD), scanning electron microscopy (SEM), thermoluminescence (TL), photoluminescence (PL), Fourier transform infrared spectroscopy, and electron paramagnetic resonance (EPR) techniques. Reitvield refinement was also performed for the structural studies. The PL emission spectra for LiMgBO3:Dy3+ consisted of two peaks at 478 due to the 4F9/26H15/2 magnetic dipole transition and at 572 nm due to the hypersensitive 4F9/26H13/2 electric dipole transition of Dy3+, respectively. A TL study was carried out for both the γ‐ray‐irradiated sample and the C5+ irradiated samples and was found to show high sensitivity for both. Moreover the γ‐ray‐irradiated LiMgBO3:Dy3+ sample showed linearity in the dose range 10 Gy to 1 kGy and C5+‐irradiated samples show linearity in the fluence range 2 × 1010 to 1 × 1011 ions/cm2. In the present study, the initial rise method, various heating rate method, the whole glow curve method, glow curve convolution deconvolution function, and Chen's peak shape method were used to calculate kinetic parameters to understand the TL glow curve mechanism in detail. Finally, an EPR study was performed to examine the radicals responsible for the TL process.  相似文献   

5.
A series of Eu3+‐activated NaLi2PO4 novel phosphors was synthesized by the solid‐state reaction method. The X‐ray diffraction (XRD) and photoluminescence (PL) properties of these phosphors were investigated at room temperature. The excitation spectra indicate that these phosphors can be effectively excited by near‐UV (370–410 nm) light. The emission spectra exhibit strong reddish‐orange performance, which is due to the 5D07FJ transitions of Eu3+ ions. The orange emission from transition 5D07F1 is dominant over that of 5D07F2. The concentration quenching of Eu3+ was observed in NaLi2PO4:Eu3+ when the Eu concentration was at 1 mol%. The impact of doping Eu3+ and photoluminescence properties were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Ce3+‐doped calcium aluminosilicate phosphor was prepared by a combustion‐assisted method at an initiating temperature of 600°C. Structural characterization was carried out using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The absorption spectra of Ca2Al2SiO7:Ce3+ showed an absorption edge at 230 nm. The optical characterization of Ca2Al2SiO7:Ce3+ phosphor was investigated in a fracto‐mechanoluminescence (FML) and thermoluminescence (TL) study. The peak of ML intensity increased as the height of impact of the moving piston increased. The TL intensity of Ca2Al2SiO7:Ce3+ was recorded for different exposure times of UV and γ‐irradiation and it was observed that TL intensity was maximum for a UV irradiation time of 30 min and for a γ‐dose of 1180 Gy. The TL intensity had three peaks for UV irradiation at temperatures 82°C, 125°C and 203°C. Also the TL intensity had a single peak at 152°C for γ‐irradiation. The TL and ML emission spectra of Ca2Al2SiO7:Ce3+ phosphor showed maximum emission at 400 nm. The possible mechanisms involved in the TL and ML processes of the Ca2Al2SiO7:Ce3+ phosphor are also explained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Photoluminescence (PL) and thermoluminescence (TL) properties of rare earth (RE) ion (RE = Dy3+, Sm3+, Ce3+, Tb3+) activated microcrystalline BaMgP2O7 phosphors are presented in this work. Non‐doped and doped samples of BaMgP2O7 were prepared using a solid state diffusion method and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), PL and TL. The XRD measurement confirmed the phase purity of the BaMgP2O7 host matrix. The average particle size was found through SEM measurement to be around 2 μm. All activators using the PL technique displayed characteristic excitation and emission spectra that corresponded to their typical f → f and f → d transitions respectively. Thermoluminescence measurements showed that BaMgP2O7:RE (RE = Dy3+, Sm3+, Tb3+, Ce3+) and co‐doped BaMgP2O7:Ce3+,Tb3+ phosphors have also TL behaviour.  相似文献   

8.
KNaSO4 microphosphor doped with Ce,Gd and Ce,Tb and prepared by a wet chemical method was studied using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) characterization. KNaSO4 has a 5‐µm particle size detected by SEM. KNaSO4:Ce3+,Tb3+ showed blue and green emission (at 494 nm, 557 nm, 590 nm) of Tb3+ due to 5D47FJ (J = 4, 5, 6) transitions. KNaSO4:Ce3+,Gd3+ showed luminescence in the ultraviolet (UV) light region at 314 nm for an excitation at 271 nm wavelength. It was observed that efficient energy transfer took place from Ce3+ → Gd3+ and Ce3+ → Tb3+ sublattices indicating that Ce3+ could effectively sensitize Gd3+ or Tb3+ (green emission). Ce3+ emission weakened and Gd3+ or Tb3+ enhanced the emission significantly in KNaSO4. This paper discusses the development and understanding of photoluminescence and the effect of Tb3+ and Gd3+ on KNaSO4:Ce3+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Single crystals of KCl doped with Ce3+,Tb3+ were grown using the Bridgeman–Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo‐stimulated luminescence (PSL), and thermal‐stimulated luminescence (TSL) properties were studied after γ‐ray irradiation at room temperature. The glow curve of the γ‐ray‐irradiated crystal exhibits three peaks at 420, 470 and 525 K. F‐Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F‐ and V‐centres are formed in the crystal during γ‐ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co‐doped KCl:Tb crystals showed broad band emission due to the d–f transition of cerium and a reduction in the intensity of the emission peak due to 5D37Fj (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co‐doping Ce3+ ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb3+. The emission due to Tb3+ ions was confirmed by PSL and TSL spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A new phosphor CaAl(SO4)2Br doped with Dy, Ce and Eu is reported. Rare earth (Dy, Eu and Ce)‐doped polycrystalline CaAl(SO4)2Br phosphors were prepared using a wet chemical reaction method and studied for X‐ray diffraction and photoluminescence (PL) characteristics. Dy3+ emission in the CaAl(SO4)2Br lattice was observed at 484 and 574 nm in the blue and yellow regions of the spectrum, which are assigned to 4 F9/26H15/2 and 4 F9/26H13/2 transitions of the Dy3+ ion, respectively. While the PL emission spectra of CaAl(SO4)2Br:Ce phosphor showed Ce3+ emission at 347 nm due to 5d → 4f transition of the Ce3+ ion. In a CaAl(SO4)2Br:Eu lattice, Eu3+ emissions were observed at 593 and 617 nm, coming from the 5D07 F1 and 5D07 F2 electron transitions, respectively. The PL study showed that the intensity of electric dipole transition at 617 nm dominates over that of magnetic dipole transition at 590 nm. The maximum PL intensity was obtained for a 1 mol% concentration of Eu3+ in CaAl(SO4)2Br host lattice. The results showed that the material may be a promising candidate as a blue‐, yellow‐ and red‐emitting phosphor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Rare earth ions (Eu3+ or Tb3+)‐activated Ca3 Ga2 Si3O12 (CaGaSi) phosphors were synthesized by using a sol–gel method. Photoluminescence spectra of Eu3+:CaGaSi phosphors exhibited five emission bands at 578, 592, 612, 652 and 701 nm, which were assigned to the transitions (5D07F0, 7F1, 7F2, 7F3 and 7F4), respectively, with an excitation wavelength of λexci = 392 nm. Among these, the transition 5D07F2 (612 nm) displayed bright red emission. In the case of Tb3+:CaGaSi phosphors, four emission bands were observed at 488 (5D47F6), 543 (5D47F5), 584 (5D47F4) and 614 nm (5D47F3) from the measurement of PL spectra with λexci = 376 nm. Among these, the transition 5D47F5 at 543 nm displayed bright green emission. The structure and morphology of the phosphors were studied from the measurements of X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy‐dispersive X‐ray analysis (EDAX) results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The individual emission and energy transfer between Ce3+ and Eu2+ or Dy3+ in BaCa(SO4)2 mixed alkaline earth sulfate phosphor prepared using a co‐precipitation method is described. The phosphor was characterized by X‐ray diffraction (XRD) and photoluminescence (PL) studies and doped by Ce;Eu and Dy rare earths. All phosphors showed excellent blue–orange emission on excitation with UV light. PL measurements reveal that the emission intensity of Eu2+ or Dy3+ dopants is greater than when they are co‐doped with Ce3+. An efficient Ce3+ → Eu2+ [2T2g(4f65d) → 8S7/2(4f7)] and Ce3+ → Dy3+ (4 F9/26H15/2 and 4 F9/26H13/2) energy transfer takes place in the BaCa(SO4)2 host. A strong blue emission peak was observed at 462 nm for Eu2+ ions and an orange emission peak at 574 nm for Dy3+ ions. Hence, this phosphor may be used as a lamp phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A series of Ce3+ ion single‐doped Ca2Al2SiO7 phosphors was synthesized by a combustion‐assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3 h and their X‐ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV‐irradiation excitation, the TL and ML emission spectra of Ca2Al2SiO7:Ce3+ phosphor showed the characteristic emission of Ce3+ peaking at 400 nm (UV–violet) and originating from the Ce3+ transitions of 5d‐4f (2F5/2 and 2F7/2). The photoluminescence (PL) emission spectra for Ca2Al2SiO7:Ce3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca2Al2SiO7:Ce3+phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A novel phosphor LiBaPO4 doped with rare earths Eu and Dy prepared by high temperature solid‐state reaction method is reported. The phosphors were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The emission and excitation spectra of these materials were measured at room temperature with a spectrofluorophotometer. The excitation spectra of LiBaPO4:Eu3+ phosphor can be efficiently excited by 394 nm, which is matched well with the emission wavelength of near‐UV light‐emitting diode (LED) chip. PL properties of Eu3+‐doped LiBaPO4 exhibited the characteristic red emission coming from 5D07 F1 (593 nm) and 5D07 F2 (617 nm) electronic transitions with color co‐ordinations of (0.680, 0.315). The results demonstrated that LiBaPO4:Eu3+ is a potential red‐emitting phosphor for near‐UV LEDs. Emission spectra of LiBaPO4:Dy3+ phosphors showed efficient blue (481 nm) and yellow (574 nm) bands, which originated from 4 F9/26H15/2 and 4 F9/26H13/2 transitions of the Dy3+ ion, respectively. The 574 nm line is more intense than the 481 nm lines, which indicates that the site Dy3+ is located with low symmetry. This article summarizes fundamentals and possible applications of optically useful inorganic phosphates with visible photoluminescence of Eu3+ and Dy3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Dy3+ and Eu3+ activated Ca3Y2Si3O12 phosphors were synthesized by the solid‐state synthesis method. The phosphors were characterized by X‐ray diffraction (XRD), mechanoluminescence (ML), thermoluminescence (TL) and photoluminescence (PL) to determine structure and luminescence. For ML glow curves, only one peak was observed, as only one type of luminescence centre was formed during irradiation. The Ca3Y2Si3O12:Dy3+ TL glow curve showed a single peak at 151.55°C and the Ca3Y2Si3O12:Eu3+ TL glow curve peaked at 323°C with a small peak at 192°C, indicating that two types of traps were activated. The trapping parameters for both the samples were calculated using Chen's peak shape method. Dy3+‐activated Ca3Y2Si3O12 showed emission at 482 and 574 nm when excited by a 351 nm excitation wavelength, whereas the Eu3+‐activated Ca3Y2Si3O12 phosphor PL emission spectra showed emission peaks at 613 nm, 591 nm, 580 nm when excited at 395 nm wavelength. When excited at 466 nm, prominent emission peaks were observed at their respective positions with very slight shifts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
LiCaBO3:Dy3+/Eu3+ phosphors were synthesized by a solid‐state reaction. The synthesized materials were characterized using powder X‐ray diffraction pattern (XRD) for confirmation. All the structural parameters were calculated from the XRD data. Scanning electron microscopy (SEM) images showed rod‐like morphology. Photoluminescence (PL) emission spectra showed two emissions (484 and 577 nm) in Dy3+‐doped LiCaBO3:Dy3+phosphors with the concentration quenching effect and the critical distance was calculated to be about 22.76 Å. LiCaBO3:Eu3+ phosphor was effectively excited by a near‐UV light of 392 nm. The emission spectra exhibited the transition from 5D0 level to 7FJ (J = 0–2) with main emission at 614 nm, which comes from the electrodipole transition because of the asymmetric point group. The quenching concentration of Eu3+ is about 0.2 mol%, and the critical distance was calculated to be about 38.93 Å. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a series of LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) down‐converting phosphors were synthesized using a modified sol–gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) phosphors with an average size of 200–300 nm obtained at 1100°C have an orthorhombic aeschynite‐type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f–f transitions of RE3+, including 489 nm (5D47F6) and 545 nm (5D47F5) for Tb3+, 476 and 482 nm (4F9/26H15/2) and 571 nm (4F9/26H13/2) for Dy3+, and 545 nm (5F4 + 5S25I8) for Ho3+, respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A series of Na15(SO4)5F4Cl phosphors doped with Ce3+ ions was prepared using the wet chemical method. X‐Ray diffraction studies were used to determine their phase formation and purity. Fourier transform infrared spectroscopy effectively identified the chemical bonds present in the molecule. The photoluminescence properties of the as‐prepared phosphors were investigated and the Ce3+ ions in these hosts were found to give broadband emission in the UV range. For the thermoluminescence study, phosphors were irradiated with a 5 Gy dose of γ‐rays from a 60Co source. Chen’s half‐width method was employed to calculate the trapping parameters from the thermoluminescence glow curve. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A series of Ce3+‐activated blue‐emitting phosphors BaY2Si3O10 (BYSO) was designed and synthesized by a conventional solid‐state method. Upon ultraviolet light (250–370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400–427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+. The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole–dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full‐color ultra‐violet (UV) white light emitting diodes (WLEDs).  相似文献   

20.
Eu3+‐activated MAl(SO4)2Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X‐ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu3+‐doped SrAl(SO4)2Br and MgAl(SO4)2Br phosphors exhibited characteristic red emission coming from the 5D07F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu3+. The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4)2Br:Eu3+, (M = Mg, Sr) phosphors have potential application in near‐UV light‐emitting diodes as efficient red‐emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号