首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Au/La2O3 nanomaterials were prepared through calcining Au‐modified La(OH)3 precursors. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray diffractometry (XRD) were employed to characterize the as‐prepared samples. Benzene, a common volatile organic compound, was selected as a model to investigate the cataluminescence (CTL)‐sensing properties of the Au/La2O3 nanomaterials. Results indicated that the as‐prepared Au/La2O3 exhibited outstanding CTL properties such as stable intensity, high signal‐to‐noise values, and short response and recovery times. Under optimized conditions, the benzene assay exhibited a broad linear range of 1–4000 ppm, with a limit of detection of 0.7 ppm, which was below the standard permitted concentrations. Furthermore, the gas sensor system showed outstanding selectivity for benzene compared with seven other types of common volatile organic compounds (VOCs). The proposed gas sensor showed good characteristics with high selectivity, fast response time and long lifetime, which suggested the promising application of the Au/La2O3 nanomaterials as a novel highly efficient CTL‐sensing material. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Oxygen (O2) homeostasis is essential to the metazoan life. O2‐sensing or hypoxia‐regulated molecular pathways are intimately involved in a wide range of critical cellular functions and cell survival from embryogenesis to adulthood. In this report, we have designed an innovative hypoxia sensor (O2CreER) based on the O2‐dependent degradation domain of the hypoxia‐inducible factor‐1α and Cre recombinase. We have further generated a hypoxia‐sensing mouse model, R26‐O2CreER, by targeted insertion of the O2CreER‐coding cassette in the ROSA26 locus. Using the ROSAmTmG mouse strain as a reporter, we have found that this novel hypoxia‐sensing mouse model can specifically identify hypoxic cells under the pathological condition of hind‐limb ischemia in adult mice. This model can also label embryonic cells including vibrissal follicle cells in E13.5–E15.5 embryos. This novel mouse model offers a valuable genetic tool for the study of hypoxia and O2 sensing in mammalian systems under both physiological and pathological conditions.  相似文献   

3.
Du  Bobo  Yang  Yuan  Zhang  Yang  Yang  Dexing 《Plasmonics (Norwell, Mass.)》2019,14(2):457-463

In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.

  相似文献   

4.
A new functional fluorinated material taking n‐propyltrimethoxysilicane (n‐propyl‐TriMOS) and 3,3,3‐trifluoropropyltrimethoxysilicane (TFP‐TriMOS) as precursors was applied to construct a novel dissolved oxygen sensing film. The sensing film was fabricated by dip‐coating the functional fluorinated material‐doped [meso‐tetrakis(pentafluorophenyl) porphyinato] platinum(II) (PtF20TPP) onto a glass slide. The oxygen sensing film exhibited a good linear relationship, fast response time, long stability and high sensitivity to dissolved oxygen. In the developed optical oxygen sensor, an LED and a photodiode were composed to construct a back‐detection optical system not needing an optical fiber based on fluorescence intensity detection. The smart optical oxygen sensor based on the PtF20TPP fluorescence quenching possesses the advantages of portability and low cost and can be applied to the dissolved oxygen in situ monitoring in seawater. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Redox indicators were employed to monitor redox status in a bioaugmented, sediment-packed column during the dechlorination of tetrachloroethene (PCE) to ethene (ETH). The speciation of the indicators thionine and cresyl violet, immobilized on transparent films, was spectrometrically monitored with a flow sensor based on circulating the column solution through a specially constructed flow cell placed in a conventional spectrometer. A fiber optic redox probe based on immobilized azure C was constructed. A 75-cm column with 4 sets of ports along the column axis at regular intervals was constructed and packed with aquifer material. These ports enabled sampling to determine concentrations of chlorinated ethene species and allowed for in situ or non-invasive monitoring of redox conditions with negligible O 2 contamination. The flow sensor and fiber optic sensor showed similar responses to redox conditions in the column. After 60 days, complete conversion of PCE to ETH occurred by the end of the column and the redox level indicated by the indicators was consistent throughout the column. Significant formation of vinyl chloride or ETH was observed only after significant reduction of cresyl violet.  相似文献   

6.
7.
Superoxide radical anion (O2˙?) as an important member of reactive oxygen species (ROS) plays a vital role both in physiology and pathology. Herein we designed and synthesized a novel phosphinate‐based bioluminescence probe for O2˙? detection in living cells, which exhibited good sensitivity for capturing O2˙? at the nanomole level and high selectivity against other ROS. The probe was further found to be of low toxicity for living cells and was then successfully employed for sensing endogenous O2˙? by using phorbol‐12‐myristate‐13‐acetate (PMA) as a traditional O2˙? stimulator in Huh7 cells. Moreover, the increasing production and use of nanoparticles, has given rise to many concerns and debates among the public and scientific authorities regarding their safety and final fate in biological systems. Herein it was found that mondisperse polystyrene particles could stimulate O2˙? generation in Huh7 cells. Overall, the probe was demonstrated to have a great potential as a novel bioluminescent sensor for detecting O2˙? in living cells. To our knowledge, this is the first small‐molecule phosphinate‐based bioluminescence probe that will open up great opportunities for unlocking the mystery of O2˙? in human health and disease.  相似文献   

8.
Aqueous rechargeable Ni‐Fe batteries featuring an ultra‐flat discharge plateau, low cost, and outstanding safety characteristics show promising prospects for application in wearable energy storage. In particular, fiber‐shaped Ni‐Fe batteries will enable textile‐based energy supply for wearable electronics. However, the development of fiber‐shaped Ni‐Fe batteries is currently challenged by the performance of fibrous Fe‐based anode materials. In this context, this study describes the fabrication of sulfur‐doped Fe2O3 nanowire arrays (S‐Fe2O3 NWAs) grown on carbon nanotube fibers (CNTFs) as an innovative anode material (S‐Fe2O3 NWAs/CNTF). Encouragingly, first‐principle calculations reveal that S‐doping in Fe2O3 can dramatically reduce the band gap from 2.34 to 1.18 eV and thus enhance electronic conductivity. The novel developed S‐Fe2O3 NWAs/CNTF electrode is further demonstrated to deliver a very high capacity of 0.81 mAh cm?2 at 4 mA cm?2. This value is almost sixfold higher than that of the pristine Fe2O3 NWAs/CNTF electrode. When a cathode containing zinc‐nickel‐cobalt oxide (ZNCO)@Ni(OH)2 NWAs heterostructures is used, 0.46 mAh cm?2 capacity and 67.32 mWh cm?3 energy density are obtained for quasi‐solid‐state fiber‐shaped NiCo‐Fe batteries, which outperform most state‐of‐the‐art fiber‐shaped aqueous rechargeable batteries. These findings offer an innovative and feasible route to design high‐performance Fe‐based anodes and may inspire new development for the next‐generation wearable Ni‐Fe batteries.  相似文献   

9.

Facile synthesis of L-tyrosine-capped silver nanoparticles (Tyr-AgNPs) was carried out, and its linear and nonlinear optical properties were investigated. Further, the sensing properties of Tyr-AgNPs toward dopamine were explored. Tyr-AgNPs exhibit a decrease in fluorescence intensity while a linear increase in absorption spectrum against increase in dopamine (DA) concentration (0–50 μM) at room temperature. Tyr-AgNPs are used as the sensing material for the fabrication of fiber optic dopamine sensor. Sensitivity, selectivity, and limit of detection of the sensor are evaluated. This proposed fiber optic sensor may offer sensitive and low-cost strategy for DA detection.

  相似文献   

10.
We present a sensitive and quick way to determine benzene, toluene and dimethylbenzene (BTEX) in air, applying a cataluminescence (CTL) sensor based on a nano‐sized composite material, γ‐Al2O3/PtO2. The factors that affect the sensor's performance were studied, including the sensing material, temperature, rate of air carrier and wavelength. It was shown that when Pt accounted for 0.2% of the sensing material, the rate of the air carrier that carries target gas was 450 mL/min, the determination wavelength was 400 nm and temperature was 236°C, this sensor showed the best CTL intensity to BTEX. In addition, the CTL intensity had a high linear relation with the concentration of BTEX, with a linear range from 0.5 to 100 mL/m3, and a detection limit 0.22 mL/m3. This nano‐sized material had a quick response within 1.5 s, short recovery time within 1 min and a long lifetime, showing good potential for a variety of applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Owing to its large surface-to-volume ratio and good biocompatibility, graphene has been identified as a highly promising candidate as the sensing layer for fiber optic sensors. In this paper, a graphene/Au-enhanced plastic clad silica (PCS) fiber optic surface plasmon resonance (SPR) sensor is presented. A sheet of graphene is employed as a sensing layer coated around the Au film on the PCS fiber surface. The PCS fiber is chosen to overcome the shortcomings of the structured microfibers and construct a more stable and reliable device. It is demonstrated that the introduction of graphene can enhance the intensity of the confined electric field surrounding the sensing layer, which results in a stronger light-matter interaction and thereby the improved sensitivity. The sensitivity of graphene-based fiber optic SPR sensor exhibits more than two times larger than that of the conventional gold film SPR fiber optic sensor. Furthermore, the dynamic response analyses reveal that the graphene/Au fiber optic SPR sensor exhibits a fast response (5 s response time) and excellent reusability (3.5% fluctuation) to the protein biomolecules. Such a graphene/Au fiber optic SPR sensor with high sensitivity and fast response shows a great promise for the future biochemical application.  相似文献   

12.
Electrogenerated chemiluminescence (ECL) of thiol‐capped CdTe quantum dots (QDs) in aqueous solution was greatly enhanced by PDDA‐protected graphene (P‐GR) film that were used for the sensitive detection of H2O2. When the potential was cycled between 0 and ?2.3 V, two ECL peaks were observed at ?1.1 (ECL‐1) and ?1.4 V (ECL‐2) in pH 11.0, 0.1 M phosphate buffer solution (PBS), respectively. The electron‐transfer reaction between individual electrochemically‐reduced CdTe nanocrystal species and oxidant coreactants (H2O2 or reduced dissolved oxygen) led to the production of ECL‐1. While mass nanocrystals packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species reacted with coreactants to produce an ECL‐2 signal. ECL‐1 showed higher sensitivity for the detection of H2O2 concentrations than that of ECL‐2. Further, P‐GR film not only enhanced ECL intensity of CdTe QDs but also decreased its onset potential. Thus, a novel CdTe QDs ECL sensor was developed for sensing H2O2. Light intensity was linearly proportional to the concentration of H2O2 between 1.0 × 10?5 and 2.0 x 10‐7 mol L?1 with a detection limit of 9.8 x 10?8 mol L?1. The P‐GR thin‐film modified glassy carbon electrode (GCE) displayed acceptable reproducibility and long‐term stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A cataluminescence (CTL) sensor using Y2O3 nanoparticles as the sensing materials was proposed for the determination of ethyl acetate. This ethyl acetate sensor showed high sensitivity and specificity at the optimal temperature of 264°C. Quantitative analysis was performed at a wavelength of 425 nm. The linear ranges of CTL intensity vs ethyl acetate concentrations were 2.0–250 ppm (r = 0.9965) and 250–6500 ppm (r = 0.9997) with a detection limit (3σ) of 0.5 ppm. There was no response or weak response when foreign substances such as formic acid, n‐hexane, toluene, acetic acid, benzene, and formaldehyde passing through the surface of Y2O3 nanoparticles. The sensor had a long lifetime more than 80 h with 3600 ppm ethyl acetate. It had been applied successfully to determine ethyl acetate in artificial air samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
New transparent optodes for life-time based microscopic imaging of O2 were developed by spin-coating a μm-thin layer of a highly luminescent cyclometalated iridium(III) coumarin complex in polystyrene onto glass cover slips. Compared to similar thin-film O2 optodes based on a ruthenium(II) polypyridyl complex or a platinum(II) porphyrin, the new planar sensors have i) higher brightness allowing for much shorter exposure times and thus higher time resolution, ii) more homogeneous and smaller pixel to pixel variation over the sensor area resulting in less noisy O2 images, and iii) a lower temperature dependency simplifying calibration procedures. We used the new optodes for microscopic imaging of the spatio-temporal O2 dynamics at the base of heterotrophic biofilms in combination with confocal imaging of bacterial biomass and biofilm structure. This allowed us to directly link biomass distribution to O2 distribution under both steady state and non-steady state conditions. We demonstrate that the O2 dynamics in biofilms is governed by a complex interaction between biomass distribution, mass transfer and flow that cannot be directly inferred from structural information on biomass distribution alone.  相似文献   

16.
Cation sensing behaviour of a pyrrole‐based derivative (2‐hydroxyl 3 methyl 6 isopropyl benzaldehyde}‐3,4‐dimethyl‐1H‐pyrrole‐2‐carbohydrazide (receptor 3) has been explored and is found to be selective towards Zn2+ over a variety of tested cations. The receptor 3 has shown high selectivity and sensitivity towards Zn2+ over the other alkali, alkaline earth and transition metal ions. In the presence of Zn2+, absorption band of receptor 3 has shown the red shift. The sensing behaviour has been suggested to continue via enhancement process which has further been supported by UV‐vis absorption and theoretical density functional theory (DFT) calculations indicating the formation of a 1:1 complex between the pyrrole based receptor 3 and Zn2+. The present work is presenting a highly selective dual channel colorimetric sensor for zinc with great sensitivity. The developed sensor was successfully applied to image intracellular Zn2+ in living cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
It is increasingly apparent that nature evolved peroxiredoxins not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Here we ask whether the H2O2 sensing role of Prx can be exploited to develop probes that allow to monitor intracellular H2O2 levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular H2O2 concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of H2O2 levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redox-sensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for H2O2 probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular H2O2 homeostasis and Prx signaling.  相似文献   

18.
Events that control developmental changes occur during specific windows of gestation and if disrupted, can lead to dysmorphogenesis or embryolethality. One largely understudied aspect of developmental control is redox regulation, where the untimely disruption of intracellular redox potentials (Eh) may alter development, suggesting that tight control of developmental‐stage–specific redox states is necessary to support normal development. In this study, mouse gestational day 8.5 embryos in whole embryo culture were treated with 10 μM dithiole‐3‐thione (D3T), an inducer of nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2). After 14 hr, D3T‐treated and ‐untreated conceptuses were challenged with 200 μM hydrogen peroxide (H2O2) to induce oxidant‐induced change to intracellular Ehs. Redox potentials of glutathione (GSH), thioredoxin‐1 (Trx1), and mitochondrial thioredoxin‐2 (Trx2) were then measured over a 2‐hr rebounding period following H2O2 treatment. D3T treatment increased embryonic expression of known Nrf2‐regulated genes, including those responsible for redox regulation of major intracellular redox couples. Exposure to H2O2 without prior D3T treatment produced significant oxidation of GSH, Trx1, and Trx2, based on Eh values, where GSH and Trx2 Eh recovered, reaching to pre‐H2O2 Eh ranges, but Trx1 Eh remained oxidized. Following H2O2 addition in culture to embryos that received D3T pretreatments, GSH, Trx1, and Trx2 were insulated from significant oxidation. These data show that Nrf2 activation may serve as a means to protect the embryo from chemically induced oxidative stress through the preservation of intracellular redox states during development, allowing normal morphogenesis to ensue.  相似文献   

19.
Wood furniture is an important source of indoor air pollution. To date, the detection of harmful substances in wood furniture has relied on the control of a single formaldehyde component, therefore the detection and evaluation of pollutants released by wood furniture are necessary. A novel method based on a cataluminescence (CTL) sensor system generated on the surface of nano‐3TiO2–2BiVO4 was proposed for the simultaneous detection of pollutants released by wood furniture. Formaldehyde and benzene were selected as a model to investigate the CTL‐sensing properties of the sensor system. Field emission scanning electronic microscopy (FESEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD) were employed to characterize the as‐prepared samples. The results showed that the as‐prepared test system exhibited outstanding CTL properties such as stable intensity, a high signal‐to‐noise ratio, and short response and recovery times. In addition, the limit of detection for formaldehyde and benzene was below the standard permitted concentrations. Moreover, the sensor system showed outstanding selectivity for formaldehyde and benzene compared with eight other common volatile organic compounds (VOCs). The performance of the sensor system will enable furniture VOC limit emissions standards to be promulgated as soon as possible. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Artificial cornea is an effective treatment of corneal blindness. Yet, intraocular pressure (IOP) measurements for glaucoma monitoring remain an urgent unmet need. Here, we present the integration of a fiber‐optic Fabry‐Perot pressure sensor with an FDA‐approved keratoprosthesis for real‐time IOP measurements using a novel strategy based on optical‐path self‐alignment with micromagnets. Additionally, an alternative noncontact sensor‐interrogation approach is demonstrated using a bench‐top optical coherence tomography system. We show stable pressure readings with low baseline drift (<2.8 mm Hg) for >4.5 years in vitro and efficacy in IOP interrogation in vivo using fiber‐optic self‐alignment, with good initial agreement with the actual IOP. Subsequently, IOP drift in vivo was due to retroprosthetic membrane (RPM) formation on the sensor secondary to surgical inflammation (more severe in the current pro‐fibrotic rabbit model). This study paves the way for clinical adaptation of optical pressure sensors with ocular implants, highlighting the importance of controlling RPM in clinical adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号