首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
This article reports on the first attempt of a systematic study on the synthesis of carbon dots (C‐dots) for the potential applications in labeling and detection of molybdenum ion (Mo6+). Carbon dots (C‐dots) were synthesized directly via a simple hydrothermal method using lemon juices as carbon precursor with different temperatures to control the luminescence of C‐dots. The obtained C‐dots had strong green light emission and the ability to use its luminescence properties as probes for Mo6+ detection application, which is based on Mo6+ induced luminescence quenching of C‐dots. This analysis system exhibits strong sensitivity and good selectivity for Mo6+ ion, and a detection limit as low as 20 ppm is achieved. These results suggest that the present C‐dots have potential application in optoelectronic, labeling and luminescent probing of Mo6+ ions.  相似文献   

2.
Highly luminescent, polymer nanocomposite films based on poly(vinyl alcohol) (PVA), and monodispersed carbon dots (C‐dots) derived from multiwalled carbon nanotubes (MWCNTs), as coatings on substrates as well as free standing ones are obtained via solution‐based techniques. The synthesized films exhibit pH‐independent photoluminescence (PL) emission, which is an advantageous property compared with the pH‐dependent photoluminescence intensity variations, generally observed for the C‐dots dispersed in aqueous solution. The synthesized C‐dots and the nanocomposite films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infra‐red spectroscopy ( FTIR), ultraviolet (UV) ? visible spectroscopy and photoluminescence spectroscopy (PL) techniques. The TEM image provides clear evidence for the formation of C‐dots of almost uniform shape and average size of about 8 nm, homogeneously dispersed in aqueous medium. The strong anchoring of C‐dots within the polymer matrix can be confirmed from the XRD results. The FTIR spectral studies conclusively establish the presence of oxygen functional groups on the surfaces of the C‐dots. The photoluminescence (PL) emission spectra of the nanocomposite films are broad, covering most part of the visible region. The PL spectra do not show any luminescence intensity variations, when the pH of the medium is changed from 1 to 11. The pH‐independent luminescence, shown by these films offers ample scope for using them as coatings for designing diagnostic and imaging tools in bio medical applications. The non‐toxic nature of these nanocomposite films has been established on the basis of cytotoxicity studies.  相似文献   

3.
Highly fluorescent nitrogen and phosphorus‐doped carbon dots with a quantum yield 59% have been successfully synthesized from citric acid and di‐ammonium hydrogen phosphate by single step hydrothermal method. The synthesized carbon dots have high solubility as well as stability in aqueous medium. The as‐obtained carbon dots are well monodispersed with particle sizes 1.5–4 nm. Owing to a good tunable fluorescence property and biocompatibility, the carbon dots were applied for intercellular sensing of Fe3+ ions as well as cancer cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Urethane acrylate (UA) was used to prepare carbon quantum dots (C‐dots) luminescent membranes and the resultants were examined with FT‐IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT‐IR results showed the polyurethane acrylate (PUA) prepolymer –C = C‐vibration at 1101 cm?1 disappeared but there was strong vibration at1687cm?1which was contributed from the–C = O groups in cross‐linking PUA. Mechanical strength results showed that the different quantity of C‐dots loadings and UV‐curing time affect the strength. SEM observations on the cross‐sections of the membranes are uniform and have no structural defects, which prove that the C‐dots are compatible with the water‐soluble PUA resin. The C‐dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C‐dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C‐dots photoluminescent film is the promising material for the flexible devices in the future applications.  相似文献   

5.
We report on metal–non‐metal doped carbon dots with very high photoluminescent properties in solution. Magnesium doping to tamarind extract associated with nitrogen‐doping is for the first time reported here which also produce very high quantum yield. Our aim is to develop such dual doped carbon dots which can also serve living cell imaging with easy permeation towards cells and show non‐cytotoxic attributes. More importantly, the chemical signatures of the carbon dots unveiled in this work can support their easy solubilization into water; even in sub‐ambient temperature. The cytotoxicity assay proves the almost negligible cytotoxic effect against human cell lines. Moreover, the use of carbon dots in UV‐active marker and polymer composites are also performed which gave clear distinguishable features of fluorescent nanoparticles. Hitherto, the carbon dots can be commercially prepared without adopting any rigorous methods and also can be used as non‐photo‐bleachable biomarkers of living cells.  相似文献   

6.
Carbon dots have been recognized as one of the most promising candidates for the oxygen reduction reaction (ORR) in alkaline media. However, the desired ORR performance in metal–air batteries is often limited by the moderate electrocatalytic activity and the lack of a method to realize good dispersion. To address these issues, herein a biomass‐deriving method is reported to achieve the in situ phosphorus doping (P‐doping) of carbon dots and their simultaneous decoration onto graphene matrix. The resultant product, namely P‐doped carbon dot/graphene (P‐CD/G) nanocomposites, can reach an ultrahigh P‐doping level for carbon nanomaterials. The P‐CD/G nanocomposites are found to exhibit excellent ORR activity, which is highly comparable to the commercial Pt/C catalysts. When used as the cathode materials for a primary liquid Al–air battery, the device shows an impressive power density of 157.3 mW cm?2 (comparing to 151.5 mW cm?2 of a similar Pt/C battery). Finally, an all‐solid‐state flexible Al–air battery is designed and fabricated based on our new nanocomposites. The device exhibits a stable discharge voltage of ≈1.2 V upon different bending states. This study introduces a unique biomass‐derived material system to replace the noble metal catalysts for future portable and wearable electronic devices.  相似文献   

7.
Dual emission carbon dots have a high potential for use as fluorescence‐based sensors with higher selectivity and sensitivity. This study demonstrated the possibility of conversion of a biological molecular system with a single emission peak to a double emission carbon dots system. This report is the first to describe the synthesis of dual emission carbon dots by tuning the electronic environment of a conjugated system. Here we prepared carbon dots from a natural extract, from which carotenoids were used as a new source for carbon dots. Formation of the carbon dots was confirmed by images obtained under a transmission electron microscope as well as from a dynamic light scattering study. The prepared carbon dots system was characterized and its optical property was monitored. The study showed that, after irradiation with microwaves, the fluorescence intensity of the whole system changed, without any change in the original peak position of the carotenoid but with the appearance of an additional peak. A Fourier transform infrared study confirmed breaking of the conjugated system. When using ethylene glycol as a surface passivating agent added to these carotenoid carbon dots, the dual emission spectra became more distinct.  相似文献   

8.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

9.
Herein, a facile, one‐step hydrothermal route to synthesize novel all‐carbon‐based composites composed of B‐doped graphene quantum dots anchored on a graphene hydrogel (GH‐BGQD) is demonstrated. The obtained GH‐BGQD material has a unique 3D architecture with high porosity and large specific surface area, exhibiting abundant catalytic active sites of B‐GQDs as well as enhanced electrolyte mass transport and ion diffusion. Therefore, the prepared GH‐BGQD composites exhibit a superior trifunctional electrocatalytic activity toward the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction with excellent long‐term stability and durability comparable to those of commercial Pt/C and Ir/C catalysts. A flexible solid‐state Zn–air battery using a GH‐BGQD air electrode achieves an open‐circuit voltage of 1.40 V, a stable discharge voltage of 1.23 V for 100 h, a specific capacity of 687 mAh g?1, and a peak power density of 112 mW cm?2. Also, a water electrolysis cell using GH‐BGQD electrodes delivers a current density of 10 mA cm?2 at cell voltage of 1.61 V, with remarkable stability during 70 h of operation. Finally, the trifunctional GH‐BGQD catalyst is employed for water electrolysis cell powered by the prepared Zn–air batteries, providing a new strategy for the carbon‐based multifunctional electrocatalysts for electrochemical energy devices.  相似文献   

10.
Sodium‐ion batteries (SIBs) have recently attracted increasing attention as the promising alternative to lithium‐ion batteries due to their multiple advantages of abundant reserves and low cost. However, the development of highly desirable anode materials suitable for SIBs is still hampered by a rather low capacity, poor rate capability, and cycling stability. Herein, a deliberate design to implement reliable and simple fabrication of an inverse opal structured nanohybrid of carbon‐confined various transition metal sulfides quantum dots (QDs) is presented. Comprehensive characterizations demonstrate that the hybrids hold a 3D architecture with uniform dispersion of QDs in a conductive carbon matrix that in turn encapsulates these quantum dots. With Co9S8 as an example, such a unique architecture, when applied as the anode of SIBs, endows the hybrids with multiple advantages including a high reversible specific capacity, extraordinary high rate capability, and excellent durability over 2000 cycles charging–discharging process.  相似文献   

11.
Here we report an easy and economical hydrothermal carbonization approach to synthesize the fluorescent nitrogen‐doped carbon dots (N‐CDs) that was developed using citric acid and triethanolamine as the precursors. The synthesis conditions were optimized to obtain the N‐CDs with superior fluorescence performances. The as‐prepared N‐CDs are monodispersed sphere nanoparticles with good water solubility, and exhibited strong fluorescence, favourable photostability and excitation wavelength‐dependent behavior. Furthermore, the in vitro cytotoxicity and cellular labeling of N‐CDs were investigated using the rat glomerular mesangial cells. The results showed the N‐CDs have more inconspicuous cytotoxicity and better biosafety in comparison with ZnSe quantum dots, although both targeted the cells successfully. Considering their admirable photostability, low toxicity and good compatibility, the as‐obtained N‐CDs could have potential applications in biosensors, cellular imaging, and other fields.  相似文献   

12.
A deep understanding of the molecular interactions of carbon nanodots with biomacromolecules is essential for wider applications of carbon nanodots both in vitro and in vivo. Herein, nitrogen and sulfur co‐doped carbon dots (N,S‐CDs) with a quantum yield of 16% were synthesized by a 1‐step hydrothermal method. The N,S‐CDs exhibited a good dispersion, with a graphite‐like structure, along with the fluorescence lifetime of approximately 7.50 ns. Findings showed that the fluorescence of the N,S‐CDs was effectively quenched by bovine hemoglobin as a result of the static fluorescence quenching. The mentioned quenching mechanism was investigated by the Stern‐Volmer equation, temperature‐dependent quenching, and fluorescence lifetime measurements. The binding constants, number of binding sites, and the binding average distance between the energy donor N,S‐CDs and acceptor bovine hemoglobin were calculated as well. These findings will provide for valuable insights on the future bioapplications of N,S‐CDs.  相似文献   

13.
A dual‐signal strategy is proposed based on fluorescent biomass‐based carbon dots (BC‐dots) and chitosan stabilized AuNPs (CS@AuNPs) to determine hyaluronidase (HAase). BC‐dots can induce aggregation of CS@AuNPs nanoparticles with a colour change from red to blue. Positively charged CS@AuNPs interacted with the negatively charged hyaluronic acid (HA) through electrostatic adsorption, and CS@AuNPs maintained stability due to the semirigid coil conformation of HA. However, in the presence of HAase, due to enzymatic hydrolysis of HA by HAase, the CS@AuNPs agglomerated. Based on the change of fluorescence and colour, quantitative analysis of HAase was achieved. Linear ranges for the fluorometric and colorimetric determinations were 2.0–70 U mL?1 and 8–60 U mL?1, respectively, with a detection limit of 0.27 U mL?1. This dual‐signal sensing system possesses high potential for determination of HAase in biological matrices.  相似文献   

14.
In this study, we prepared carbon dots (CDs) from wheat bran via hydrothermal treatment at 180°C for 3 h. The prepared CDs showed blue‐green fluorescence under UV light. The fluorescence emission study of the CDs revealed that they showed maximum fluorescence emission at 500 nm. The prepared CDs showed a high quantum yield of 33.23%. Solvent‐dependent fluorescence emission analysis of the CDs was performed to study the variation in fluorescence emission characteristics with solvent polarity. The prepared CDs were conjugated with amoxicillin (AMX) to explore its potential for use as a drug delivery agent for AMX. The drug release profile of the CD–AMX conjugates was analyzed at different pH (5.0, 6.8 and 7.2) to study drug release kinetics. CD–AMX conjugates showed notable bacterial inhibition against Gram‐positive (S. aureus) and Gram‐negative (E. coli) strains with minimal cytotoxic effects, indicating its potential as a promising antibacterial drug delivery system.  相似文献   

15.
Non-traditional C-H cdots, three dots, centered Y hydrogen bonds, in which a carbon atom acts as the hydrogen donor and an electronegative atom Y (Y=N, O or S) acts as the acceptor, have been reported in proteins, but their importance in protein structures is not well established. Here, we present the results of three computational tests that examine the significance of C-H cdots, three dots, centered Y bonds involving the C(alpha) in proteins. First, we compared the number of C(alpha)-H cdots, three dots, centered Y bonds in native structures with two sets of compact, energy-minimized decoy structures. The decoy structures contain about as many C(alpha)-H cdots, three dots, centered Y bonds as the native structures, indicating that the constraints of chain connectivity and compactness can lead to incidental formation of C(alpha)-H cdots, three dots, centered Y bonds. Secondly, we examined whether short C(alpha)-H cdots, three dots, centered Y bonds have a tendency to be linear, as is expected for a cohesive hydrogen-bonding interaction. The native structures do show this trend, but so does one of the decoy sets, suggesting that this criterion is also not sufficient to indicate a stabilizing interaction. Finally, we examined the preference for C(alpha)-H cdots, three dots, centered Y bond donors to be near to strong hydrogen bond acceptors. In the native proteins, the alpha protons attract strong acceptors like oxygen atoms more than weak acceptors. In contrast, hydrogen bond donors in the decoy structures do not distinguish between strong and weak acceptors. Thus, any individual C(alpha)-H cdots, three dots, centered Y bond may be fortuitous and occur due to the polypeptide connectivity and compactness. Taken collectively, however, C(alpha)-H cdots, three dots, centered Y bonds provide a weakly cohesive force that stabilizes proteins.  相似文献   

16.
In this work, fluorescent carbon dots (CDs) were synthesized using a hydrothermal method with glucose as the carbon source and were surface‐modified with ethylenediamine. The properties of as‐prepared CDs were analyzed by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), ultraviolet–visible light (UV/vis) absorption and fluorescent spectra. Furthermore, CDs conjugated with mouse anti‐(human carcinoembryonic antigen) (CEA) monoclonal antibody were successful employed in the biolabeling and fluorescent imaging of human gastric carcinoma cells. In addition, the cytotoxicity of CDs was also tested using human gastric carcinoma cells. There was no apparent cytotoxicity on human gastric carcinoma cells. These results suggest the potential application of the as‐prepared CDs in bioimaging and related fields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
CdTe quantum dots, 3.28 nm in size, were synthesized using a one‐step method in an aqueous medium. The CdTe quantum dots were successfully employed as hybrid phosphors for white light‐emitting diode (LED) devices by combining them with yellow‐emitting YAG:Ce phosphor. The color‐rendering index value and International Commission on illumination coordinates for hybrid phosphor white LEDs were 75 and (x = 0.30, y = 0.29), respectively. Compared with conventional phosphors, semiconductor quantum dots have larger band gap energy and broader absorption features, and can be excited more efficiently by optical pumping sources. The results confirmed that the high color‐rendering index value of the white LED was due to the CdTe quantum dots introduced in the hybrid phosphor system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A facile and eco‐friendly hydrothermal method was used to prepare carbon quantum dots (CQDs) using orange waste peels. The synthesized CQDs were well dispersed and the average diameter was 2.9 ± 0.5 nm. Functional group identification of the CQDs was confirmed by Fourier transform infrared spectrum analysis. Fluorescence properties of the synthesized CQDs exhibited blue emission. The fluorescence quantum yield of the CQDs was around 11.37% at an excitation wavelength of 330 nm. The higher order nonlinear optical properties were examined using a Z‐scan technique and a continuous wave laser that was operated at a wavelength of 532 nm. Results demonstrated that the synthesis of CQDs can be considered as promising for optical switching devices, bio‐scanning, and bio‐imaging for optoelectronic applications.  相似文献   

20.
In this present study, a fluorescent probe was developed to detect curcumin, which is derived from the rhizomes of the turmeric. We used a simple and economical way to synthesize boron and nitrogen co‐doped carbon dots (BNCDs) by microwave heating. The maximum emission wavelength of the BNCDs was 450 nm at an excitation wavelength of 360 nm. The as‐prepared BNCDs were characterized by multiple analytical techniques such as transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, and infrared spectroscopy. The synthesized carbon nanoparticles had an average particle diameter of 4.23 nm. The BNCDs exhibited high sensitivity to the detection of curcumin at ambient conditions. The changes of BNCDs fluorescent intensity show a good linear relationship with the curcumin concentrations in the range 0.2–12.5 μM. This proposed method has been successfully applied to detect the curcumin in urine samples with the recoveries of 96.5–105.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号