首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new combination of ibuprofen (NSAID) and famotidine (H2 receptor antagonist) was recently approved by the FDA. It was formulated to relief pain while decreasing the risk of ulceration, which is a common problem for patients receiving NSAID. A rapid and simple derivative emission spectrofluorimetric method is proposed for the simultaneous analysis of this combination in their pharmaceutical preparation. The method is based upon measurement of the native fluorescence intensity of the two drugs at λex = 233 nm in acetonitrile. The emission data were differentiated using the first (D1) derivative technique. The plots of derivative fluorescence intensity versus concentration were rectilinear over a range of 2–35 and 0.4–8 µg/mL for both ibuprofen (IBU) and famotidine (FAM), respectively. The method was sensitive as the limits of detection were 0.51 and 0.12 µg/mL and limits of quantitation were 1.70 and 0.39 µg/mL, for IBU and FAM respectively. The proposed derivative emission spectrofluorimetric method was successfully applied for the determination of the two drugs in their synthetic mixtures and tablets with good accuracy and precision. The proposed method was validated as per ICH guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Amlodipine besylate (AML) is available in fixed‐dose combination tablets with either candesartan cilexetil (CAN) or telmisartan (TEL). This work describes a simple, selective and sensitive spectrofluorimetric method for analysis of AML/CAN and AML/TEL binary mixtures without prior separation. The method involves measurement of the native fluorescence of AML at excitation and emission wavelengths of 367 and 454 nm, respectively, in water without interference from either of the two drugs. By contrast, the intrinsic fluorescence of CAN was measured at excitation and emission wavelengths of 265 and 392 nm, respectively, in ethanol, while TEL was measured at 366 nm in 0.05 M sodium hydroxide solution using 294 nm as the excitation wavelength. The proposed spectrofluorimetric procedure was validated with respect to linearity, ranges, precision, accuracy, selectivity, robustness, detection and quantification limits. Regression analysis showed a good correlation between fluorescence intensity and concentration over the ranges 0.1–1.4, 0.025–0.25 and 0.0025–0.05 µg/mL for AML, CAN and TEL, respectively. Limits of detection were 0.034, 0.0063 and 0.0007 µg/mL for AML, CAN and TEL, respectively. The proposed method was successfully applied for the analysis of several synthetic binary mixtures of different ratios and laboratory‐prepared tablets with good recoveries, and no interference from common pharmaceutical additives was observed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Two simple, rapid and sensitive methods, namely, fourth‐derivative synchronous spectrofluorimetry (method I) and HPLC with fluorescence detection (method II) were developed for the simultaneous analysis of a binary mixture of itopride HCl (ITP) and domperidone (DOM) without prior separation. The first method was based on measuring the fourth derivative of the synchronous fluorescence spectra of the two drugs at Δλ = 40 nm in methanol. The different experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully optimized. Chromatographic separation was performed in < 6.0 min using a RP C18 column (250 mm × 4.6 mm i.d., 5 µm particle size) with fluorescence detection at 344 nm after excitation at 285 nm. A mobile phase composed of a mixture of 0.02 M phosphate buffer with acetonitrile in a ratio of 55 : 45, pH 4.5, was used at a flow rate of 1 mL/min. Linearity ranges were found to be 0.1–2 µg/mL for ITP in both methods, whereas those for DOM were found to be 0.08–2 and 0.05–1.5 µg/mL in methods I and II, respectively. The proposed methods were successfully applied for the determination of the studied drugs in synthetic mixtures and laboratory‐prepared tablets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of amisulpride (AMS) and bumidazone (BUM) in tablet form. The proposed method is based on measuring the native fluorescence of the studied drugs in methanol at 360 and 344 nm after excitation at 276 and 232 nm for AMS and BUM, respectively. The fluorescence–concentration plots were rectilinear over the ranges of 5.0–60.0 ng/mL for AMS and 0.5–5.0 µg/mL for BUM. The lower detection limits were 0.70 ng/mL and 0.06 µg/mL, and the lower quantification limits were 2.0 ng/mL and 0.18 µg/mL for AMS and BUM, respectively. The method was successfully applied for the analysis of AMS and BUM in commercial tablets. Statistical evaluation and comparison of the data obtained using the proposed and comparison methods revealed good accuracy and precision for the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid, simple, and sensitive second‐derivative synchronous fluorimetric method has been developed and validated for the simultaneous analysis of a binary mixture of desloratadine (DSL) and montelukast sodium (MKT) in their co‐formulated tablets. The method is based on measurement of the synchronous fluorescence intensities of the two drugs in McIlvaine's buffer, pH 2.3, in the presence of carboxy methyl cellulose sodium (CMC) as a fluorescence enhancer at a constant wavelength difference (Δλ) of 160 nm. The presence of CMC enhanced the synchronous fluorescence intensity of DSL by 216% and that of MKT by 28%. A linear dependence of the concentration on the amplitude of the second derivative synchronous fluorescence spectra was achieved over the ranges of 0.10–2.00 and 0.20–2.00 µg/mL with limits of detection of 0.02 and 0.03, and limits of quantification of 0.05 and 0.10 µg/mL for DSL and MKT, respectively. The proposed method was successfully applied for the determination of the studied compounds in laboratory‐prepared mixtures and tablets. The results were in good agreement with those obtained with the comparison method. The high sensitivity attained by the proposed method allowed the determination of MKT in spiked human plasma with average % recovery of 100.11 ± 2.44 (n = 3). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, sensitive and rapid spectrofluorimetric method was developed for the determination of esomeprazole (EMZ) and pantoprazole (PRZ) in their pharmaceutical formulations and human plasma. The proposed method is based on the fluorescence spectral behavior of EMZ in methanol in the presence of 0.1 m NaOH containing 0.5% methyl cellulose (MC) at 306/345 nm. The fluorescence intensity of EMZ was enhanced about 1.3‐fold and good linearity in the range 0.4–4.0 µg/mL with a lower detection limit of 0.04 µg/mL and lower quantification limit of 0.14 µg/mL. For PRZ, its methanolic solution exhibited marked native fluorescence at 290/325 nm after enhancement (about 2.1‐ or 1.4‐fold) using either 0.025% sodium dodecyl sulfate (SDS) or 0.05% MC in the presence of 0.2 m borate buffer of pH 9.5. The fluorescence–concentration plots of PRZ were rectilinear over the ranges 0.2–2.0 and 0.3–3.0 µg/mL with lower detection limits of 0.02 and 0.03 µg/mL and lower quantification limits of 0.07 and 0.09 µg/mL using sodium dodecyl sulfate and MC, respectively. The method was successfully applied to the analysis of EMZ and PRZ in their commercial dosage forms and the results were in good agreement with those obtained with the comparison method. Furthermore, in a preliminary investigation, the proposed method was extended to the in vitro determination of the two drugs in spiked human plasma and the results were satisfactory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Aliskiren hemifumarate (ALS) and amlodipine besylate (AML) were simultaneously determined by two different spectrofluorimetric techniques. The first technique depends on direct measurement of the steady‐state fluorescence intensities of ALS and AML at 313 nm and 452 nm upon excitation at 290 and 375 nm, respectively, in a solvent composed of methanol and water (10: 90, v/v) . The second technique utilizes synchronous fluorimetric quantitative screening of the emission spectra of ALS and AML at 272 and 366 nm, respectively using Δλ of 97 nm. Effects of different solvents and surfactants on relative fluorescence intensity were studied. The method was validated according to ICH guidelines. Linearity, accuracy and precision were found to be satisfactory in both techniques over the concentration ranges of 1–15 and 0.4–4 µg/mL for ALS and AML, respectively. In the first technique, limit of detection and limit of quantification were estimated and found to be 0.256 and 0.776 µg/mL for ALS as well as 0.067 and 0.204 µg/mL for AML, respectively. Also, limit of detection and limit of quantification were calculated in the synchronous method and found to be 0.293 and 0.887 µg/mL for ALS as well as 0.034 and 0.103 µg/mL for AML, respectively. The methods were successfully applied for the determination of the two drugs in their co‐formulated tablets. The results were compared statistically with reference methods and no significant difference was found. The developed methods are rapid, sensitive, inexpensive and accurate for the quality control and routine analysis of the cited drugs in bulk and in pharmaceutical preparations without pre‐separation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4‐chloro‐(2′‐hydroxylophenylazo)rhodanine–Ti(IV) [ClHARP–Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2‐ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and γ‐globin (γ‐G) were studied. The detection limits were 0.182 µg/mL for BSA, 0.0788 µg/mL for HSA, 0.216 µg/mL for Ova and 0.484 µg/mL for γ‐G. The linear ranges of the calibration were 0–12.0, 0–10.0, 0–18.0 and 0–18.0 µg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A new, sensitive and selective spectrofluorimetric method has been developed for the determination of duloxetine (DLX) in capsule and spiked human plasma. DLX, as a secondary amine compound, reacts with 7‐chloro‐4‐nitrobenzofurazon (NBD‐Cl), a highly sensitive fluorogenic and chromogenic reagent used in many investigations. The method is based on the reaction between the drug and NBD‐Cl in borate buffer at pH 8.5 to yield a highly fluorescent derivative that is measured at 523 nm after excitation at 478 nm. The fluorescence intensity was directly proportional to the concentration over the range 50–250 ng/mL. The reaction product was also measured spectrophotometrically. The relation between the absorbance at 478 nm and the concentration is rectilinear over the range 1.0–12.0 µg/mL. The methods were successfully applied for the determination of this drug in pharmaceutical dosage form. The spectrofluorimetric method was also successfully applied to the determination of duloxetine in spiked human plasma. The suggested procedures could be used for the determination of DLX in pure form, capsules and human plasma being sensitive, simple and selective. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Simple and rapid synchronous fluorometric methods were adopted and validated for the simultaneous analysis of a binary mixture of diphenhydramine (DIP) and ibuprofen (IBU) ( Mix I) or DIP and phenylephrine (PHE) (Mix II) in their co‐formulated pharmaceuticals without prior separation. Analysis of Mix I is based on the measurement of the peak amplitudes (D1) of synchronous fluorescence intensities at 265.1 nm for DIP and 260 nm for IBU. The relationship between the concentration and the amplitude of the first‐derivative synchronous fluorescence spectra showed good linearity over the concentration ranges 0.50–10.00 μg ml?1 and 0.50–7.90 μg ml?1 for DIP and IBU, respectively. Analysis of Mix II was based on measurement of the peak amplitude (D1) synchronous fluorescence intensities at 230 nm for DIP and at 253.9 nm for PHE. Moreover, for Mix II, the peak amplitude (D2) synchronous fluorescence intensities were measured at 227.9 nm for DIP and at 264.9 nm for PHE. Calibration plots were rectilinear over the concentration range 0.30–3.50 μg ml?1 and 0.03–0.75 μg ml?1 for DIP and PHE, respectively. The proposed methods were successfully applied to determine the studied compounds in pure form and in pharmaceutical preparations.  相似文献   

13.
A highly sensitive and simple spectrofluorimetric method was developed for the determination of loratadine (LRT) and desloratadine (DSL) in their pharmaceutical formulations. The proposed method is based on investigation of the fluorescence spectral behaviour of LRT and DSL in a sodium dodecyl sulphate (SDS) micellar system. In aqueous solution of acetate buffer of pH 4.5, the fluorescence intensities of both LRT and DSL were greatly enhanced (240%) in the presence of SDS. The fluorescence intensity was measured at 438 nm after excitation at 290 nm for both drugs. The fluorescence–concentration plots were rectilinear over the range 0.05–2.0 µg/mL for both LRT and DSL, with lower detection limits of 5.13 × 10?3 and 6.35 × 10?3 µg/mL for LRT and DSL, respectively. The method was successfully applied to the analysis of the two drugs in their commercial tablets, capsules and syrups, and the results were in good agreement with those obtained with the official or comparison methods. The proposed method is specific for the determination of LRT in the presence of other co‐formulated drugs, such as pseudoephedrine. The application of the proposed method was extended to stability studies of LRT and DSL after exposure to different forced degradation conditions, such as acidic, alkaline and oxidative conditions, according to ICH guidelines. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive spectrofluorimetric method using constant‐energy synchronous fluorescence technique is proposed for the determination of human albumin without separation. In this method, no reagent was used for enhancement of the fluorescence signal of albumin in the solution. Effects of some parameters, such as energy difference between excitation and emission monochromators (ΔE), emission and excitation slit widths and scan rate of wavelength were studied and the optimum conditions were established. For this purpose factorial design and response surface method were employed for optimization of the effective parameters on the fluorescence signal. The results showed that the scan rate of the wavelength has no significant effect on the analytical signal. The calibration curve was linear in the range 0.1–220.0 µg mL–1 of albumin with a detection limit of 7.0 × 10–3 µg mL–1. The relative standard deviations (RSD) for six replicate measurements of albumin were calculated as 2.2%, 1.7% and 1.3% for 0.5, 10.0 and 100.0 µg mL–1 albumin, respectively. Furthermore the proposed method has been employed for the determination of albumin in human serum and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Two simple, rapid, sensitive and precise spectrophotometric and spectrofluorimetric methods were developed for the determination of indacaterol maleate in bulk powder and capsules. Both methods were based on the direct measurement of the drug in methanol. In the spectrophotometric merthod (Method I) the absorbance was measured at 259 nm. The absorbance‐concentration plot was rectilinear over the range 1.0–10.0 µg mL?1 with a lower detection limit (LOD) of 0.078 µg mL?1 and lower quantification limit (LOQ) of 0.238 µg mL?1. Meanwhile in the spectrofluorimetric method (Method II) the native fluorescence was measured at 358 nm after excitation at 258 nm. The fluorescence‐concentration plot was rectilinear over the range of 1.0–40.0 ng mL?1 with an LOD of 0.075 ng mL?1and an LOQ of 0.226 ng mL?1. The proposed methods were successfully applied to the determination of indacaterol maleate in capsules with average percent recoveries ± RSD% of 99.94 ± 0.96 for Method I and 99.97 ± 0.81 for Method II. In addition, the proposed methods were extended to a content uniformity test according to the United States Pharmacopoeia (USP) guidelines and were accurate, precise for the capsules studied with acceptance value 3.98 for Method I and 2.616 for Method II. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In pH 5.0–5.4 HAc–NaAc buffer solution, lincomycin (Linco) reacted with Pd(II) to form 1:1 cationic chelate, which could further react with erythrosine (Ery) to form 1:1 ion‐association complexes (Pd–Linco)Ery. As a result, not only were the absorption and fluorescence spectra changed, but also the resonance Rayleigh scattering (RRS) intensity was greatly enhanced. These phenomena offered useful means for the determination of Linco by spectrophotometry, fluorescence and RRS methods. The linear range and detection limit of Linco were 0.20–3.00 µg/mL and 0.057 µg/mL, 0.20–4.80 µg/mL and 0.061 µg/mL, 0.05–2.70 µg/mL and 0.015 µg/mL for the spectrophotometric, fluorescence quenching and RRS methods, respectively. Among these, the RRS method obtained the highest sensitivity. Therefore, the optimum reaction conditions and the influences of coexisting substances were investigated using the RRS method. A simple, sensitive and rapid method has been developed for the determination of Linco in either the pharmaceutical form or human body fluids, and the reasons for RRS enhancement are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In weak acidic medium, the anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) bind with halofluorescein dyes, such as erythrosin (Ery), eosin Y (EY) and eosin B (EB), to form ion‐association complexes, which causes fluorescence quenching of halofluorescein dyes. The quenching values (ΔF) are directly in proportional to the concentrations of bleomycins over the range 0.09–2.5 µg/mL. Based on this, a fluorescence quenching method for the determination of BLMA5 and BLMA2 has been developed. The dynamic range is 0.12–2.5 µg/mL for the determination of BLMA5 and 0.09–2.0 µg/mL for BLMA2, with detection limits (3σ) of 0.04 µg/mL for BLMA5, 0.03 µg/mL for BLMA2, respectively. It has been applied to determine the two antibiotics in human serum, urine and rabbit serum samples. The recovery is in the range 90–102%. In this work, the optimum reaction conditions and the spectral characteristics of the fluorescence are investigated. The reasons for fluorescence quenching are discussed, based on the fluorescence theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
In pH 4.99‐6.06 Britton‐Robinson (BR) buffer medium, 6‐benzylaminopurine (6‐BA) reacted with Na2WO4 to form 1:1 anionic chelate (6‐BA·WO4)2‐, which further reacted with rhodamine 6G to form ternary ion complexes at room temperature. This resulted in a significant enhancement of resonance Rayleigh scattering (RRS) with a maximum RRS wavelength of 316 nm. Meanwhile, the fluorescence of the solution was quenched and excitation (λex) and emission (λem) wavelengths of the fluorescence were 290 and 559 nm, respectively. Intensities of RRS enhancing (ΔIRRS) and fluorescence quenching (ΔIF) were directly proportional to concentrations of 6‐BA. As a result, RRS and fluorescence quenching for determination of trace amounts of 6‐BA were developed. Under optimal conditions, linear ranges and detection limits of the two methods were 0.05‐15.00 µg/mL and 8.2 ng/mL (RRS), 0.50‐15.00 µg/mL and 17.0 ng/mL, respectively. It was found that the RRS method was superior to fluorescence quenching. The influence of these methods were investigated and results showed that RRS had good selectivity. RRS was applied to determine 6‐BA in vegetable samples with satisfactory results. Furthermore, the reaction mechanisms of the ternary ion‐association system are discussed. In addition, the polarization experiment revealed that the resonance light scattering (RLS) peak of Na2WO4‐6‐BA‐R6G consisted mainly of depolarized resonance fluorescence and resonance scattering. It was speculated that light emission fluorescence energy (EL) transformed into resonance light scattering energy (ERLS), which was a key reason for enhancement of RRS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Propofol and cisatracurium besylate have been simultaneously determined using a highly sensitive first derivative synchronous spectrofluorometric method. The method is based on measuring first derivative synchronous spectrofluorimetric amplitude at Δλ = 40 nm with a scanning rate of 600 nm/min. The different experimental parameters affecting the fluorescence intensity of the two drugs were carefully studied and optimized. The amplitude–concentration plots were rectilinear over the range 40.0–400.0 ng/mL and 20.0–280.0 ng/mL for propofol and cisatracurium, respectively with lower detection limits of 4.0 and 2.35 ng/mL and quantification limits of 12.1 and 7.1 ng/mL for propofol and cisatracurium, respectively. The proposed method was successfully applied for the determination of the two compounds in synthetic mixtures and in commercial ampoules. The high sensitivity attained using the proposed method allowed the simultaneous determination of both drugs in spiked plasma samples. The mean % recoveries in spiked human plasma (n = 3) were 96.53 ± 0.90 and 96.20 ± 1.64 for each of propofol and cisatracurium, respectively. The method was validated in compliance with International Council of Harmonization (ICH) Guidelines.  相似文献   

20.
A new, simple and sensitive spectrofluorimetric method has been developed for the determination of pregabalin (PG) in capsules. The method is based on the reaction between pregabalin and fluorescamine in borate buffer solution of pH 10 to give a highly fluorescent derivative that is measured at 487 nm after excitation at 390 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence intensity concentration plot was rectilinear over the range of 0.01–0.3 µg mL?1 with a lower detection limit of 0.0017 µg mL?1 and limit of quantitation of 0.005 µg mL?1. The developed method was successfully applied to the analysis of the drug in its commercial capsules. The mean percentage recovery of PG in its capsule was 99.93±1.24 (n = 3). Statistical comparison of the results with those of the comparison method revealed good agreement and proved that there was no significant difference in the accuracy and precision of the two methods. A proposed reaction pathway was postulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号