首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological effects of ultraviolet radiation (UV), such as DNA damage, mutagenesis, cellular aging, and carcinogenesis, are in part mediated by reactive oxygen species (ROS). The major intracellular ROS intermediate is hydrogen peroxide, which is synthesized from superoxide anion (O2) and further metabolized into the highly reactive hydroxyl radical. In this study, we examined the involvement of mitochondria in the UV‐induced H2O2 accumulation in a keratinocyte cell line HaCaT. Respiratory chain blockers (cyanide‐p‐trifluoromethoxy‐phenylhydrazone and oligomycin) and the complex II inhibitor (theonyltrifluoroacetone) prevented H2O2 accumulation after UV. Antimycin A that inhibits electron flow from mitochondrial complex III to complex IV increased the UV‐induced H2O2 synthesis. The same effect was seen after incubation with rotenone, which blocks electron flow from NADH‐reductase (complex I) to ubiquinone. UV irradiation did not affect mitochondrial transmembrane potential (ΔΨm). These data indicate that UV‐induced ROS are produced at complex III via complex II (succinate‐Q‐reductase). J. Cell. Biochem. 80:216–222, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

2.
To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, luminescent lanthanide complexes of a new tripodal ligand, featuring N‐thenylsalicylamide arms, were synthesized and characterized by elemental analysis, IR and TGA measurements. Photophysical properties of the complexes were studied by means of UV ? visible absorption and steady‐state luminescence spectroscopy. The results of UV ? vis spectra indicate that metal binding does not disturb the electronic structure of the ligand. Excited‐state luminescence lifetimes and quantum yields of the complexes were determined. The photoluminescence analysis suggested that there is an efficient ligand ? Ln(III) energy transfer for the Tb(III) complex, and the ligand is an efficient 'antenna' for Tb(III). From a more general perspective, the results demonstrated the potential application of the lanthanide complex as luminescent materials in material chemistry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Shanji Li 《Luminescence》2012,27(3):242-245
A new Eu(III) complex, Eu(III)(DBM)3BIOQ, has been synthesized with dibenzoylmethane (DBM) as the first ligand and 2‐(benzimidazol‐2‐yl)‐8‐octyloxyquinoline (BIOQ) as the second ligand. The stability of the complex was analysed by DSC–TG. The results show that the Eu(III) complex has a relatively high thermal stability with a melting point of 235 °C and a decomposition temperature (onset) of 252 °C. The fluorescence properties of the compound were also investigated. The fluorescence results reveal that the as‐prepared complex shows the characteristic maximum emission spectra of Eu(III) at 611 nm (λex = 350 nm). In addition, the photoluminescence spectrum of the complex in the solid state exhibits a single and symmetrical emission band at 611 nm, with a full width at half‐maximum of 4.7 nm, showing high colour purity. This finding indicates the possibility for the development of brighter red luminescent materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive fluorescence (FL) technique is proposed for the determination of levofloxacin (LVX). The method is based on the fact that the weak FL signal of the Tb(III)–LVX system is strongly enhanced in the presence of gold nanoparticles. Gold nanoparticles were prepared by the citrate reduction of HAuCl4 and characterized by transmission electron microscopy (TEM). Levofloxacin and Tb(III) ion form a fluorescence complex in aqueous solution, and its maximum emission wavelength was found at 545 nm. Optimal conditions for the formation of the levofloxacin–Tb(III) complexes were studied. Levofloxacin was detected by measuring the FL intensity, which increases linearly with the concentration of LVX in the range 6.2 × 10−10–2.6 × 10−8 mol/L. Recovery of the target analytes was > 96% with good quality parameters: linearity (r2 > 0.996), limit of detection (LOD) and limit of quantification (LOQ) values 2.1 × 10−10 mol/L and 7.2 × 10−10 mol/L, and run‐to‐run and day‐to‐day precisions with relative standard deviations (RSDs) around 3%. Thus, the proposed method can be successfully applied to the routine determination of levofloxacin in pharmaceutical preparations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A novel ternary complex, Tb2L4·L′·(ClO4)6·8H2O, has been synthesized using bis(benzylsulfinyl)methane as the first ligand L and 2,2′‐dipyridyl as the second ligand L′. The ternary complex was characterized by element analysis, molar conductivity, coordination titration analysis, infrared, thermogravimetric‐differential scanning calorimetric and ultraviolet spectra. The results indicated that the composition of the complex was Tb2L4·L′·(ClO4)6·8H2O (L = C6H5CH2SOCH2SOCH2C6H5; L′ = Dipy). Fourier transform infrared results revealed that the perchlorate group was bonded with the Tb(III) ion by the oxygen atom, and the coordination was bidentate. The fluorescent spectra illustrated that the complex displayed characteristic fluorescence in the solid state. After the introduction of the second ligand, 2,2‐dipyridyl, the relative emission intensity and fluorescence lifetime of the ternary complex Tb2L4·L′·(ClO4)6·8H2O were enhanced compared to the binary complex TbL2.5(ClO4)3·3H2O. This indicated that the presence of both organic ligand bis(benzylsulfinyl)methane and the second ligand 2,2‐dipyridyl could sensitize the fluorescence intensity of Tb(III) ion, and introduction of the 2,2‐dipyridyl group resulted in an enhancement of the fluorescence of the Tb(III) ternary rare earth complex. The strongest characteristic fluorescence emission intensity of the ternary complex was 9.36 times that of the binary complex. The phosphorescence spectra and fluorescence lifetime of the complex were also measured. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde–aniline (SAN) and salicylaldehyde–cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand‐functionalized PSFs, PSF–SAN and PSF–SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer–rare earth complexes, PSF–SAN–Eu(III) and PSF–SCA–Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo‐gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF–SAN–Eu(III) series complexes, namely the binary complex PSF–(SAN)3–Eu(III) and the ternary complex PSF–(SAN)3–Eu(III)–(Phen)1 (Phen is the small‐molecule ligand 1,10‐phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF–SAN–Eu(III) series complexes, namely the binary complex PSF–(SCA)3–Tb(III) and the ternary complex PSF–(SCA)3–Tb(III)–(Phen)1, display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III).  相似文献   

7.
A novel ligand containing multiple coordinating groups (sulfinyl, carboxyl and carbonyl groups), acetophenonylcarboxymethyl sulphoxide, was synthesized. Its corresponding two lanthanide (III) binary complexes were synthesized and characterized by element analysis, molar conductivity, FT‐IR, TG‐DTA and UV spectroscopy. Results showed that the composition of these complexes was REL3L (ClO4)2·3H2O (RE = Eu (III), Tb (III); L = C6H5COCH2SOCH2COOH; L = C6H5COCH2SOCH2COO). FT‐IR results indicated that acetophenonylcarboxymethyl sulphoxide was bonded with an RE (III) ion by an oxygen atom of the sulfinyl and carboxyl groups and not by an oxygen atom of the carbonyl group due to high steric hinderance. Fluorescent spectra showed that the Tb (III) complex had excellent luminescence as a result of a transfer of energy from the ligand to the excitation state energy level (5D4) of Tb (III). The Eu (III) complex displayed weak luminescence, attributed to low energy transfer efficiency between the triplet state energy level of its ligand and the excited state (5D0) of Eu (III). As a result, the Tb (III) complex displayed a good antenna effect for luminescence. The fluorescence decay curves of Eu (III) and Tb (III) complexes were also measured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The resolution methods applying (?)‐(4R,5R)‐4,5‐bis(diphenylhydroxymethyl)‐2,2‐dimethyldioxolane (“TADDOL”), (?)‐(2R,3R)‐α,α,α',α'‐tetraphenyl‐1,4‐dioxaspiro[4.5]decan‐2,3‐dimethanol (“spiro‐TADDOL”), as well as the acidic and neutral Ca2+ salts of (?)‐O,O'‐dibenzoyl‐ and (?)‐O,O'‐di‐p‐toluoyl‐(2R,3R)‐tartaric acid were extended for the preparation of 1‐n‐butyl‐3‐methyl‐3‐phospholene 1‐oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single‐crystal X‐ray analysis. The absolute P‐configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. Chirality 26:174–182, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M?1 for HSA and 0.1363 × 103 M?1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.  相似文献   

11.
Reactions of N,N′‐bis (salicylidene)‐1,2‐cyclohexanediamine (H2L) with mixed lanthanide counterions of LnCl3·6H2O and Ln (NO3)3·6H2O afford six H2L lanthanide coordination polymers, e.g. {[Pr(H2L)2(NO3)2Cl]·2CH2Cl2}n ( 1 ); {[Ln(H2L)1.5(NO3)3]2·5CHCl3·mCH3OH}n [Ln = Sm ( 2 ), Eu ( 3 ), Gd ( 4 ), Tb ( 5 ) and Yb ( 6 ); m = 1 ( 2 – 5 ); m = 0 ( 6 )]. X‐ray crystallographic analysis reveals that complex 1 exhibits three‐dimensional diamondoid topologic structure and complexes 2 – 6 are of two‐dimensional structure. Luminescent spectra show that complexes 1 and 6 have characteristic near‐infrared (NIR) emission of praseodymium (III) and ytterbium (III) ions and complexes 2 – 5 emit luminescence in the visible region. Complexes 3 and 6 reveal sensitive luminescence responses to formaldehyde.  相似文献   

12.
A novel C17 resorcylic acid was synthesized by a structure‐guided Vitis vinifera stilbene synthase (STS) mutant, in which threonine 197 was replaced with glycine (T197G). Altering the architecture of the coumaroyl binding and cyclization pocket of the enzyme led to the attachment of an extra acetyl unit, derived from malonyl‐CoA, to p‐coumaroyl‐CoA. The resulting novel pentaketide can be produced strictly by STS‐like enzymes and not by Chalcone synthase‐like type III polyketide synthases; due to the unique thioesterase like activity of STS‐like enzymes. We utilized a liquid chromatography mass spectrometry‐based data analysis approach to directly compare the reaction products of the mutant and wild type STS. The findings suggest an easy to employ platform for precursor‐directed biosynthesis and identification of unnatural polyketides by structure‐guided mutation of STS‐like enzymes.  相似文献   

13.
We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N‐dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities toward human cancer cells and identifying the cellular proteasome as one of the major targets. However, the importance of the oxidation state of the gold center and the involved mechanism of action has yet to be established. Here we show that both gold(III)? and gold(I)–dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and [Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin‐like activity of purified 20S proteasome and 26S proteasome in human breast cancer MDA‐MB‐231 cells, resulting in accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell death, but at significantly different levels. Gold(I)‐ and gold(III)‐compound‐mediated proteasome inhibition and cell death induction were completely reversed by the addition of a reducing agent, dithiothreitol or N‐acetyl‐L ‐cysteine, suggesting the involvement of redox processes. Furthermore, treatment of MDA‐MB‐231 cells with gold(III) compound (AUL12), but not the gold(I) analog (AUL15), resulted in the production of significant levels of reactive oxygen species. Our study provides strong evidence that the cellular proteasome is an important target of both gold(I) and gold(III)–dithiocarbamates, but distinct cellular mechanisms of action are responsible for their different overall effect. J. Cell. Biochem. 109: 162–172, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
《Chirality》2017,29(6):273-281
Enantiomeric 1H and 13C NMR signal separation behaviors of various α‐amino acids and DL‐tartarate were investigated by using the samarium(III) and neodymium(III) complexes with (S ,S )‐ethylenediamine‐N ,N' ‐disuccinate as chiral shift reagents. A relatively smaller concentration ratio of the lanthanide(III) complex to substrates was suitable for the neodymium(III) complex compared with the samarium(III) one, striking a balance between relatively greater signal separation and broadening. To clarify the difference in the signal separation behavior, the chemical shifts of β‐protons for fully bound D‐ and L‐alanine (δb(D) and δb(L)) and their adduct formation constants (K s) were obtained for both metal complexes. Preference for D‐alanine was similarly observed for both complexes, while it was revealed that the difference between the δb(D) and δb(L) values is the significant factor to determine the enantiomeric signal separation. The neodymium(III) and samarium(III) complexes can be used complementarily for higher and smaller concentration ranges of substrates, respectively, because the neodymium(III) complex gives the larger difference between the δb(D) and δb(L) values with greater signal broadening compared to the samarium(III) complex.  相似文献   

15.
Two new ternary tetrazolate Eu(III) complexes with phosphine oxide co‐ligands Eu(PTO)3·(P1/P2) [PTO = 5‐(2‐pyridyl‐1‐oxide)tetrazole, P1 = diphenylphosphorylamino‐phenylphosphoryl‐benzene, P2 = diphenylphosphorylpyridine)‐bis‐isobutyricphosphoryl] were synthesized and characterized using UV, fluorescence, IR and 1H NMR spectroscopic techniques. The analytical data prove that the complexes are mononuclear in nature and the central Eu(III) ion is coordinated by three N and three O atoms of tetrazolate, and two O atoms of the corresponding bidentate phosphine oxide ligands. The ancillary ligand increased the photoluminescence efficiency of Eu(PTO)3·P1 (complex 3) by twofold compared with our previously reported Eu(PTO)3 complex (complex 1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The optically active mixed‐ligand fac(S)‐tris(thiolato)rhodium(III) complexes, ΔLfac(S)‐[Rh(aet)2(L‐cys‐N,S)]? (aet = 2‐aminoethanethiolate, L‐cys = L‐cysteinate) ( 1 ) and ΔLLfac(S)‐[Rh(aet)(L‐cys‐N,S)2]2? were newly prepared by the equatorial preference of the carboxyl group in the coordinated L‐cys ligand. The amide formation reaction of 1 with 1,10‐diaminodecane and polyallylamine gave the diamine‐bridged dinuclear Rh(III) complex and the single‐chain polymer‐supported Rh(III) complex with retention of the ΔL configuration of 1 , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear‐type trinuclear structure with the S‐bridged Co(III) center and the two Δ‐Rh(III) terminal moieties. The polymer‐supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85–91, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
A new dinuclear copper(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐N′‐ (2‐carbo‐xylatophenyl)oxamide (H3dmapob), and endcapped with 2,2′‐diamino‐4,4′‐bithiazole (dabt), namely [Cu2(dmapob)(dabt)(CH3OH)(pic)]·(DMF)0.75·(CH3OH)0.25 has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single‐crystal X‐ray diffraction. In the crystal structure, both copper(II) ions have square–pyramidal coordination geometries. The Cu···Cu separation through the oxamido bridge is 5.176(9) Å. A two‐dimensional supramolecular framework is formed through hydrogen bonds and π–π stacking interactions. The reactivities toward herring sperm DNA and bovine serum albumin (BSA) show that the complex can interact with the DNA via intercalation mode and bind to the BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines. The influence of different bridging ligands in dinuclear complexes on the DNA‐ and BSA‐binding properties as well as anticancer activities is preliminarily discussed.  相似文献   

18.
Solid complexes of lanthanide nitrates with an novel unsymmetrical tripodal ligand, butyl‐N,N‐bis[(2′‐benzylaminofomyl)phenoxyl)ethyl]‐amine ( L ) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Using 2,4,6‐tris‐(2‐pyridyl)‐s‐triazine (TPTZ) as a neutral ligand, and p‐hydroxybenzoic acid, terephthalic acid and nitrate as anion ligands, five novel europium complexes have been synthesized. These complexes were characterized using elemental analysis, rare earth coordination titrations, UV/vis absorption spectroscopy and infrared spectroscopy. Luminescence spectra, luminescence lifetime and quantum efficiency were investigated and the mechanism discussed in depth. The results show that the complexes have excellent emission intensities, long emission lifetimes and high quantum efficiencies. The superior luminescent properties of the complexes may be because the triplet energy level of the ligands matches well with the lowest excitation state energy level of Eu3+. Moreover, changing the ratio of the ligands and metal ions leads to different luminescent properties. Among the complexes, Eu2(TPTZ)2(C8H4O4)(NO3)4(C2H5OH)·H2O shows the strongest luminescence intensity, longest emission lifetime and highest quantum efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
《Luminescence》2003,18(5):259-267
High‐valent oxo‐iron(IV) species are commonly proposed as the key intermediates in the catalytic mechanisms of iron enzymes. Water‐soluble iron(III) tetrakis‐5,10,15,20‐(N‐methyl‐4‐pyridyl)porphyrin (Fe(III)TMPyP) has been used as a model of heme‐enzyme to catalyse the hydrogen peroxide (H2O2) oxidation of various organic compounds. However, the mechanism of the reaction of Fe(III)TMPyP with H2O2 has not been fully established. In this study, we have explored the kinetic simulation of the reaction of Fe(III)TMPyP with H2O2 and of the catalytic reactivity of FeTMPyP in the luminescent peroxidation of luminol. According to the mechanism that has been established in this work, Fe(III)TMPyP is oxidized by H2O2 to produce (TMPyP)·+Fe(IV)=O (k1 = 4.5 × 104/mol/L/s) as a precursor of TMPyPFe(IV)=O. The intermediate, (TMPyP)·+Fe(IV)=O, represented nearly 2% of Fe(III)TMPyP but it does not accumulate in suf?cient concentration to be detected because its decay rate is too fast. Kinetic simulations showed that the proposed scheme is capable of reproducing the observed time courses of FeTMPyP in various oxidation states and the decay pro?les of the luminol chemiluminescence. It also shows that (TMPyP)·+Fe(IV)=O is 100 times more reactive than TMPyPFe(IV)=O in most of the reactions. These two species are responsible for the initial sharp and the sustained luminol emissions, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号