首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre‐eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially ‘external’ causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress‐induced iron dysregulation, and (ii) its ability to awaken dormant, non‐replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.  相似文献   

2.
γ‐Glutamyltranspeptidase and asparaginase have been shown to play important roles in Helicobacter pylori colonization and cell death induced by H. pylori infection. In this study, the association of γ‐glutamyltranspeptidase and asparaginase was elucidated by comparing activities of both deamidases in H. pylori strains from patients with chronic gastritis, gastric and duodenal ulcers, and gastric cancer. γ‐Glutamyltranspeptidase activities in H. pylori strains from patients with gastric cancer were significantly higher than in those from patients with chronic gastritis or gastric ulcers. There was a wide range of asparaginase activities in H. pylori strains from patients with gastric cancer and these were not significantly than those from patients with other diseases. To identify the contributions of γ‐glutamyltranspeptidase and asparaginase to gastric cell inflammation, human gastric epithelial cells (AGS line) were infected with H. pylori wild‐type and knockout strains and inflammatory responses evaluated by induction of interleukin‐8 (IL‐8). IL‐8 response was significantly decreased by knockout of the γ‐glutamyltranspeptidase‐encoding gene but not by knockout of the asparaginase‐encoding gene. Additionally, IL‐8 induction by infection with the H. pylori wild‐type strain was significantly decreased by adding glutamine during infection. These findings indicate that IL‐8 induction caused by γ‐glutamyltranspeptidase activity in H. pylori is mainly attributable to depletion of glutamine. These data suggest that γ‐glutamyltranspeptidase plays a significant role in the chronic inflammation caused by H. pylori infection.  相似文献   

3.
Orthodenticle homeobox 2 (OTX2) controls essential, homeostatic retinal pigment epithelial (RPE) genes in the adult. Using cocultures of human CD14+ blood monocytes (Mos) and primary porcine RPE cells and a fully humanized system using human‐induced pluripotent stem cell‐derived RPE cells, we show that activated Mos markedly inhibit RPEOTX2 expression and resist elimination in contact with the immunosuppressive RPE. Mechanistically, we demonstrate that TNF‐α, secreted from activated Mos, mediates the downregulation of OTX2 and essential RPE genes of the visual cycle among others. Our data show how subretinal, chronic inflammation and in particular TNF‐α can affect RPE function, which might contribute to the visual dysfunctions in diseases such as age‐related macular degeneration (AMD) where subretinal macrophages are observed. Our findings provide important mechanistic insights into the regulation of OTX2 under inflammatory conditions. Therapeutic restoration of OTX2 expression might help revive RPE and visual function in retinal diseases such as AMD.  相似文献   

4.
Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL‐33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL‐33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide‐Binding Oligomerisation Domain‐Containing Protein 1 (NOD1) and its adaptor protein receptor‐interacting serine–threonine Kinase 2, to promote production of both full‐length and processed IL‐33 in gastric epithelial cells. Furthermore, IL‐33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1+/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL‐33 and splenic IL‐13 responses, but decreased IFN‐γ responses, when compared with Nod1?/? animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL‐33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation.  相似文献   

5.
The increasing incidence of diseases caused by Candida species and complications in individuals with impaired immunity require new strategies for candidiasis treatment and prevention. The available therapies are often of limited effectiveness in immunocompromised patients, resulting in treatment failures, chronic infections and high mortality rates. Research directed at identifying the composition of an effective vaccine is required. Mannan forms the outermost layer of the Candida cell wall and has an essential role in modulation of anti‐Candida host immune responses. Therefore, Candida cell wall mannan and synthetically prepared manno‐oligomer‐based glycoconjugates are the foci of attention in vaccine candidate development. Almost all of the existing human vaccines mediate protection through neutralizing antibodies. Th1‐based and/or Th17‐based cellular immune responses, rather than antibody‐mediated immunity, mediate protection against candidiasis. Findings of published studies indicate that analysis of cellular immune responses as well as antibody responses is necessary when assessing the immunomodulatory properties of manno‐oligomer‐based glycoconjugates that are potential anti‐Candida vaccine candidates.  相似文献   

6.
Silicosis is an occupational lung disease caused by the inhalation of silica dust and characterized by lung inflammation and fibrosis. Interleukin (IL)‐1β is induced by silica and functions as the key pro‐inflammatory cytokine in this process. The Th17 response, which is induced by IL‐1β, has been reported very important in chronic human lung inflammatory diseases. To elucidate the underlying mechanisms of IL‐1β and IL‐17 in silicosis, we used anakinra and an anti‐IL‐17 monoclonal antibody (mAb) to block the receptor of IL‐1β (IL‐RI) and IL‐17, respectively, in a mouse model of silicosis. We observed increased IL‐1β expression and an enhanced Th17 response after silica instillation. Treatment with an IL‐1 type I receptor (IL‐1RI) antagonist anakinra substantially decreased silica‐induced lung inflammation and the Th17 response. Lung inflammation and the accumulation of inflammatory cells were attenuated in the IL‐17‐neutralized silicosis group. IL‐17 may promote lung inflammation by modulating the differentiation of Th1 and regulatory T cells (Tregs) and by regulating the production of IL‐22 and IL‐1β during the lung inflammation of silicosis. Silica may induce IL‐1β production from alveolar macrophages and promote inflammation by initiating a Th17 response via an IL‐1β/IL‐1RI‐dependent mechanism. The Th17 response could induce lung inflammation during the pathogenesis of silicosis by regulating the homoeostasis of the Th immune responses and affecting the production of IL‐22 and IL‐1β. This study describes a potentially important inflammatory mechanism of silicosis that may bring about novel therapies for this inflammatory and fibrotic disease.  相似文献   

7.
Most species of the genus Laggera are often used in traditional and folk medicines for the treatment of jaundice, inflammation, leukemia, removing phlegm, bronchitis and bacterial diseases. The essential oils obtained from Laggera plants are rich sources of oxygenated monoterpenes and sesquiterpenes. Among oxygenated monoterpenes, aromatic ether 2,5‐dimethoxy‐p‐cymene is the most abundant and dominant compound of many essential oils of the Laggera species. Till today, to the best of our knowledge, chemical compounds of the essential oils and/or extracts of only eight Laggera species were reported from different countries. Thus, this review presents the chemical compositions and biological activities of the essential oils of these plants studied in thirteen countries. In addition, it discusses the reported ethnobotanical and ethnopharmacological information as well as biological activities of the extracts and some of the isolated compounds of Laggera plants species.  相似文献   

8.
Helicobacter pylori (HP) is a Gram‐negative bacterium that chronically infects the stomach of more than 50% of human population and represents a major cause of gastric cancer, gastric lymphoma, gastric autoimmunity, and peptic ulcer. It still remains to be elucidated, which HP virulence factors are important in the development of gastric disorders. Here, we analysed the role of the HP protein HP1454 in the host–pathogen interaction. We found that a significant proportion of T cells isolated from HP patients with chronic gastritis and gastric adenocarcinoma proliferated in response to HP1454. Moreover, we demonstrated in vivo that HP1454 protein drives Th1/Th17 inflammatory responses. We further analysed the in vitro response of human T cells exposed either to an HP wild‐type strain or to a strain with a deletion of the hp1454 gene, and we revealed that HP1454 triggers the T‐cell antigen receptor‐dependent signalling and lymphocyte proliferation, as well as the CXCL12‐dependent cell adhesion and migration. Our study findings prove that HP1454 is a crucial bacterial factor that exerts its proinflammatory activity by directly modulating the T‐cell response. The relevance of these results can be appreciated by considering that compelling evidence suggest that chronic gastric inflammation, a condition that paves the way to HP‐associated diseases, is dependent on T cells.  相似文献   

9.
Chronic arsenic exposure through water intake is a worldwide issue, which has caused many diseases. Lungs are the first target organ of arsenic and lung inflammation, autophagy, and even the onset of tumors can be induced by arsenic exposure. Here, we tested the outcome of low‐concentration arsenic exposure in rat lungs. Tissue changes, inflammation, autophagy, and other physiological responses were observed in this study. Results showed that low‐concentration exposure of arsenite through water intake could initiate autophagy and inflammation in lungs but high concentration exposure produced a weak autophagy response and accentuated inflammation with the possibility of a chronic inflammation environment emerging followed by tumorigenesis.  相似文献   

10.
Calorie restriction (CR) is one of the most robust means to improve health and survival in model organisms. CR imposes a metabolic program that leads to increased stress resistance and delayed onset of chronic diseases, including cancer. In rodents, CR induces the upregulation of two NADH‐dehydrogenases, namely NAD(P)H:quinone oxidoreductase 1 (Nqo1) and cytochrome b5 reductase 3 (Cyb5r3), which provide electrons for energy metabolism. It has been proposed that this upregulation may be responsible for some of the beneficial effects of CR, and defects in their activity are linked to aging and several age‐associated diseases. However, it is unclear whether changes in metabolic homeostasis solely through upregulation of these NADH‐dehydrogenases have a positive impact on health and survival. We generated a mouse that overexpresses both metabolic enzymes leading to phenotypes that resemble aspects of CR including a modest increase in lifespan, greater physical performance, a decrease in chronic inflammation, and, importantly, protection against carcinogenesis, one of the main hallmarks of CR. Furthermore, these animals showed an enhancement of metabolic flexibility and a significant upregulation of the NAD+/sirtuin pathway. The results highlight the importance of these NAD+ producers for the promotion of health and extended lifespan.  相似文献   

11.
Although chronic inflammation is believed to contribute to the pathology of age‐related macular degeneration (AMD), knowledge regarding the events that elicit the change from para‐inflammation to chronic inflammation in the pathogenesis of AMD is lacking. We propose here that lipocalin‐2 (LCN2), a mammalian innate immunity protein that is trafficked to the lysosomes, may contribute to this process. It accumulates significantly with age in retinal pigment epithelial (RPE) cells of Cryba1 conditional knockout (cKO) mice, but not in control mice. We have recently shown that these mice, which lack βA3/A1‐crystallin specifically in RPE, have defective lysosomal clearance. The age‐related increase in LCN2 in the cKO mice is accompanied by increases in chemokine (C‐C motif) ligand 2 (CCL2), reactive gliosis, and immune cell infiltration. LCN2 may contribute to induction of a chronic inflammatory response in this mouse model with AMD‐like pathology.  相似文献   

12.
Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model pathogens, Mycobacterium tuberculosis and Porphyromonas gingivalis, which efficiently escape various aspects of the immune system within professional and non‐professional immune cell types to establish chronic inflammation. J. Cell. Physiol. 228: 1413–1422, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Increased activation of the major pro‐inflammatory NF‐κB pathway leads to numerous age‐related diseases, including chronic liver disease (CLD). Rapamycin, an inhibitor of mTOR, extends lifespan and healthspan, potentially via suppression of inflammaging, a process which is partially dependent on NF‐κB signalling. However, it is unknown if rapamycin has beneficial effects in the context of compromised NF‐κB signalling, such as that which occurs in several age‐related chronic diseases. In this study, we investigated whether rapamycin could ameliorate age‐associated phenotypes in a mouse model of genetically enhanced NF‐κB activity (nfκb1?/?) characterized by low‐grade chronic inflammation, accelerated aging and CLD. We found that, despite showing no beneficial effects in lifespan and inflammaging, rapamycin reduced frailty and improved long‐term memory, neuromuscular coordination and tissue architecture. Importantly, markers of cellular senescence, a known driver of age‐related pathology, were alleviated in rapamycin‐fed animals. Our results indicate that, in conditions of genetically enhanced NF‐κB, rapamycin delays aging phenotypes and improves healthspan uncoupled from its role as a suppressor of inflammation.  相似文献   

14.
The endogenous microenvironment of the brain is an essential watchdog to guard over myeloid cell function during diseases. Limiting inflammatory reactions of activated microglia and blood‐derived monocytes is a key prerequisite for the resolution of tissue insults. So far, however, it was unknown why monocytes but not microglia are able to shift to an anti‐inflammatory state during inflammation. In this issue of The EMBO Journal, Cohen and colleagues identified the molecular switch underlying this fundamental functional change. The authors found that the transforming growth factor‐β1 (TGFβ1) prevents activated microglia to switch to an anti‐inflammatory state by regulating the expression of Irf7.  相似文献   

15.
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.  相似文献   

16.
17.
Systemic inflammation is central to aging‐related conditions. However, the intrinsic factors that induce inflammation are not well understood. We previously identified a cell‐autonomous pathway through which damaged nuclear DNA is trafficked to the cytosol where it activates innate cytosolic DNA sensors that trigger inflammation. These results led us to hypothesize that DNA released after cumulative damage contributes to persistent inflammation in aging cells through a similar mechanism. Consistent with this notion, we found that older cells harbored higher levels of extranuclear DNA compared to younger cells. Extranuclear DNA was exported by a leptomycin B‐sensitive process, degraded through the autophagosome–lysosomal pathway and triggered innate immune responses through the DNA‐sensing cGAS‐STING pathway. Patient cells from the aging diseases ataxia and progeria also displayed extranuclear DNA accumulation, increased pIRF3 and pTBK1, and STING‐dependent p16 expression. Removing extranuclear DNA in old cells using DNASE2A reduced innate immune responses and senescence‐associated (SA) β‐gal enzyme activity. Cells and tissues of Dnase2a?/? mice with defective DNA degradation exhibited slower growth, higher activity of β‐gal, or increased expression of HP‐1β and p16 proteins, while Dnase2a?/?;Sting?/? cells and tissues were rescued from these phenotypes, supporting a role for extranuclear DNA in senescence. We hypothesize a direct role for excess DNA in aging‐related inflammation and in replicative senescence, and propose DNA degradation as a therapeutic approach to remove intrinsic DNA and revert inflammation associated with aging.  相似文献   

18.
Airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by excessive inflammation and are exacerbated by nontypeable Haemophilus influenzae (NTHi). Airway epithelial cells mount the initial innate immune responses to invading pathogens and thus modulate inflammation. While inflammation is necessary to eliminate a pathogen, excessive inflammation can cause damage to the host tissue. Therefore, the inflammatory response must be tightly regulated and deciphering the signaling pathways involved in this response will enhance our understanding of the regulation of the host inflammatory response. NTHi binds to TLR2 and signal propagation requires the adaptor molecule myeloid differentiation factor 88 (MyD88). An alternative spliced form of MyD88 is called MyD88 short (MyD88s) and has been identified in macrophages and embryonic cell lines as a negative regulator of inflammation. However, the role of MyD88s in NTHi-induced inflammation in airway epithelial cells remains unknown. Here we show that NTHi induces MyD88s expression and MyD88s is a negative regulator of inflammation in airway epithelial cells. We further demonstrate that MyD88s is positively regulated by IKKβ and CREB and negatively regulated by ERK1/2 signaling pathways. Taken together these data indicate that airway inflammation is controlled in a negative feedback manner involving MyD88s and suggest that airway epithelial cells are essential to maintain immune homeostasis.  相似文献   

19.
Identification of cellular processes modulated by microbial organisms that undermine and disarm mammalian host defences against bacterial invaders has been the focus of significant biomedical research. In this microreview we will illustrate the role of bacterial N‐acyl homoserine lactones (AHL) as a strategy utilized by Gram‐negative bacterial pathogens to enable colonization of the host through AHL‐mediated inhibition of inflammation induced via innate immune receptor mechanisms. We will also highlight some of the signalling pathways in which the study of AHL‐mediated effects on mammalian cells might lead to the discovery of global underlying principles linking inflammation and immunity to many chronic human diseases, including cancer and obesity.  相似文献   

20.
Helicobacter pylori (H. pylori) is a common pathogenic bacterium in the stomach that infects almost half of the population worldwide and is closely related to gastric diseases and some extragastric diseases, including iron‐deficiency anemia and idiopathic thrombocytopenic purpura. Both the Maastricht IV/Florence consensus report and the Kyoto global consensus report have proposed the eradication of H. pylori to prevent gastric cancer as H.pylori has been shown to be a major cause of gastric carcinogenesis. The interactions between H. pylori and host receptors induce the release of the proinflammatory cytokines by activating proinflammatory signaling pathways such as nuclear factor kappa B (NF‐κB), which plays a central role in inflammation, immune response, and carcinogenesis. Among these receptors, Toll‐like receptors (TLRs) are classical pattern recognition receptors in the recognition of H. pylori and the mediation of the host inflammatory and immune responses to H. pylori. TLR polymorphisms also contribute to the clinical consequences of H. pylori infection. In this review, we focus on the functions of TLRs in the NF‐κB signaling pathway activated by H. pylori, the regulators modulating this response, and the functions of TLR polymorphisms in H.pylori‐related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号