共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium ion-sugar cotransport via the melibiose transport system in Escherichia coli. Measurement of Li+ transport and specificity 总被引:5,自引:0,他引:5
A lithium ion-selective electrode was constructed using N,N'-diheptyl-N,N'-5,5-tetramethyl-3,7-dioxanonandiamid as a Li+ ionophore. Lithium ion-sugar cotransport via the melibiose transport system was measured with this electrode. Influx of methyl-beta-D-thiogalactoside, methyl-alpha-D-galactoside, methyl-beta-D-galactoside, and D-galactose elicited uptake of Li+. This Li+ uptake was not observed when the melibiose carrier was not present in the cells or the carrier was inactivated. Melibiose caused a small amount of Li+ uptake, indicating that Li+-melibiose cotransport proceeds inefficiently. Raffinose, another substrate, did not cause detectable Li+ transport. In mutant cells which showed altered cation coupling (Niiya, S., Yamasaki, K., Wilson, T. H., and Tsuchiya, T. (1982) J. Biol. Chem. 257, 8902-8906), Li+-melibiose cotransport was clearly demonstrated. Alteration in substrate specificity was also shown in the mutants. 相似文献
2.
Proton entry into anaerobic Escherichia coli in response to the addition of HCl was measured by monitoring pH changes in the external solution. Preincubation of cells in a Na+ -free medium containing melibiose or methyl-alpha-galactoside (alpha MG) stimulated the rate of H+ entry in response to the acid pulse. This melibiose- or alpha MG-dependent proton pathway appeared to be identical to the melibiose carrier, since the channel was only observed in melibiose-induced cells. Furthermore, this membrane pathway for protons showed the same temperature sensitivity as the melibiose carrier (active at 30 degrees but inactive at 37 degrees). These observations are consistent with the idea that the melibiose transport system provides a pathway for protons in the presence of appropriate substrates, but that the pathway is closed to protons in the absence of the sugar. Such observations indicate that there is an obligatory coupling between H+ flux and melibiose or alpha MG flux through the carrier when Na+ is omitted from the incubation medium. 相似文献
3.
Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli. 总被引:2,自引:15,他引:2 下载免费PDF全文
Thiomethyl-beta-galactoside (TMG) accumulation via the melibiose transport system was studied in lactose transport-negative strains of Escherichia coli. TMG uptake by either intact cells or membrane vesicles was markedly stimulated by Na+ or Li+ between pH 5.5 and 8. The Km for uptake of TMG was approximately 0.2 mM at an external Na+ concentration of 5 mM (pH 7). The alpha-galactosides, melibiose, methyl-alpha-galactoside, and o-nitrophenyl-alpha-galactoside had a high affinity for this system whereas lactose, maltose and glucose had none. Evidence is presented for Li+-TMG or Na+-TMG cotransport. 相似文献
4.
Co-transport of Na+ and methul-beta-D-thiogalactopyranoside mediated by the melibiose transport system of Escherichia coli. 总被引:7,自引:0,他引:7
Na+-dependent transport of methyl-β-D-thiogalactopyranoside (TMG) mediated by the melibiose transport system was investigated in mutants lacking the lactose transport system. When an inwardly-directed electro-chemical potential difference of Na+ was imposed across the membrane of energy depleted cells, transient uptake of TMG was observed. Addition of TMG to cell suspensions under anaerobic conditions caused a transient acidification of the medium. This acidification was observed only in the presence of Na+ or Li+. These results support the idea that TMG is taken up by a mechanism of Na+-TMG co-transport via the melibiose transport system in . 相似文献
5.
The melibiose permease system of E. coli K12 has been explored using a strain deficient in lactose permease: 300 P. The accumulation of 1-S-methyl-beta-D-thiogalactopyranoside (TMG) was observed. The uptake system was inducible by melibiose and a number of analogs at 30 degrees C. At higher temperatures the differential rate of synthesis decreases until becoming negligible at 42 degrees C. The uptake tends toward a steady state which corresponds to an accumulation several hundredfold over the sugar concentration in the medium. At a given temperature the steady state level was proportional to the initial rate of uptake whatever the degree of induction and the substrate concentration. Lowering the temperature decreased the initial rate of uptake but increased the steady state level. This uptake system was pH dependent with better efficiency at pH 8. It was also dependent on the presence of sodium or lithium ions active at 5 mM whereas potassium at 170 mM enable only about half maximal uptake. The uptake in a medium with choline chloride was less than one fifth of optimal activity. Addition of Li+ brought about half maximal activation at approximately 0.5 mM. The activation consists mainly in a decrease of apparent Km. The emphasis of this study was put on the similarities and differences with lactose permease which is able to transport the same sugar to approximately the same extent. Inducer specificities and substrate specificities were compared and a method of measuring the two activities in the same cells was devised. 相似文献
6.
M C Botfield K Naguchi T Tsuchiya T H Wilson 《The Journal of biological chemistry》1992,267(3):1818-1822
The minimum structural information necessary to formulate and assess mechanistic models of integral membrane protein function is that of membrane topology. This paper characterizes the topological structure of the melibiose carrier of Escherichia coli based on constraints provided by genetic fusions to the compartment-specific reporter protein alkaline phosphatase. Twenty-eight unique chimeras exhibiting either low alkaline phosphatase activity (cytoplasmic location of the fusion joint) or high alkaline phosphatase activity (periplasmic location of the fusion joint) were characterized and used in conjunction with Goldman-Engelman-Steitz hydropathy analysis to model topological structure. The melibiose carrier is predicted to have a cytoplasmic amino terminus, two sets of six transmembrane domains separated by an unusually large cytoplasmic loop ("six-loop-six" arrangement), and a 45-residue cytoplasmic carboxyl tail. Remarkably, the identical six-loop-six arrangement is predicted from the hydrophobicity plots of the H(+)-coupled lactose, arabinose, xylose, and citrate cotransporters of E. coli, the glucose transporter from rat brain, the family of glucose transporters isolated from various human tissues and cell lines, and the human, mouse, and hamster multidrug resistance transporters (Henderson, P.J.F. (1990) Res. Microbiol. 141, 316-328; Maloney, P.C. (1990) Res. Microbiol. 141, 374-383). Such a broad degree of conservation (or convergence) suggests a distinct structural and/or mechanistic advantage associated with the six-loop-six motif. The nature of this advantage is as yet unknown. 相似文献
7.
Different conditions were studied for optimal solubilization and reconstitution of the melibiose carrier of Escherichia coli. Several alpha- and beta-galactosides, known to be substrates for the melibiose carrier, were found to inhibit [3H]-melibiose uptake by proteoliposomes. In the presence of 10 mM Na+ the Km for melibiose counterflow was 0.42 mM. Melibiose and raffinose were good substrates for counterflow, while thiomethyl-beta-galactoside and p-nitrophenyl-alpha-galactoside were accumulated very poorly. Although the latter two sugars are known to be substrates for the carrier, they showed a very rapid rate of passive diffusion across the liposome membrane. The proton ionophore carbonylcyanidechlorophenylhydrazone had no effect on uptake, suggesting that a proton motive force is not essential for the counterflow phenomenon. 相似文献
8.
Electrogenic activity associated with the activity of the melibiose permease (MelB) of Escherichia coli was investigated by using proteoliposomes containing purified MelB adsorbed onto a solid-supported membrane. Transient currents were selectively recorded by applying concentration jumps of Na+ ions (or Li+) and/or of different sugar substrates of MelB (melibiose, thio-methyl galactoside, raffinose) using a fast-flow solution exchange system. Characteristically, the transient current response was fast, including a single decay exponential component (tau approximately 15 ms) on applying a Na+ (or Li+) concentration jump in the absence of sugar. On imposing a Na+ (or Li+) jump on proteoliposomes preincubated with the sugar, a sugar jump in a preparation preincubated with the cation, or a simultaneous jump of the cation and sugar substrates, the electrical transients were biphasic and comprised both the fast and an additional slow (tau approximately 350 ms) decay components. Finally, selective inactivation of the cosubstrate translocation step by acylation of MelB cysteins with N-ethyl maleimide suppressed the slow response components and had no effect on the fast transient one. We suggest that the fast transient response reflects charge transfer within MelB during cosubstrate binding while the slow component is associated with charge transfer across the proteoliposome membrane. From the time course of the transient currents, we estimate a rate constant for Na+ binding in the absence and presence of melibiose of k > 50 s(-1) and one for melibiose binding in the absence of Na+ of k approximately 10 s(-1). 相似文献
9.
Trileucine is utilized as a source of leucine for growth of strains of Escherichia coli K-12 that are deficient in the oligopeptide transport system (Opp). Trithreonine is toxic to E. coli K-12. Opp- mutants of E. coli K-12 retain complete sensitivity to this tripeptide. Moreover, E. coli W, which is resistant to trithreonine, can utlize this tripeptide as a threonine source and this capability is fully maintained in E. coli W (Opp-). A spontaneous trithreonine-resistant mutant of E. coli K-12 (Opp-) has been isolated that has an impaired growth response to trileucine and is resistant to trithreonine. Trileucine competes with the uptake of trithreonine as measured by its ability to relieve trithreonine toxicity in E. coli K-12. It is concluded that trileucine as well as trithreonine are transported into E. coli K-12 or W by a common uptake system that is distinct from the Opp system. Trimethionine can act as a competitor of trileucine or trithreonine-supported growth and as an antagonist of trithreonine toxicity in Opp- mutants. It is concluded that trimethionine is recognized by the trileucine-trithreonine transport system. Trithreonine, trimethionine, and trileucine are also transported by the Opp system, as they all relieve triornithine toxicity towards E. coli W and compete with tetralysine utilization as lysine source for growth of a lysine auxotroph of this strain. 相似文献
10.
The presence of both the carbonyl portion of the carboxyl group at position 2 of the pyrrolidine ring and a secondary amine was essential for uptake of a compound by the proline permease of Escherichia coli. The permease possessed a high affinity for azetidine-2-carboxylic acid and for compounds with ring structures smaller than the pyrrolidine ring. Pipecolic acid, the higher homologue of proline, and its derivatives were not transported. Cis- and trans-3,4-methano-prolines, also six-membered ring structures, behaved anomolously in that they possessed a high affinity for the permease. The difference between the methano-prolines and other six-membered ring structures probably resides in the fact that the former exist in the "boat" configuration whereas the latter possess the "chair" configuration. In general, substituted prolines in the cis configuration displayed a higher affinity for the permease than did corresponding trans isomers, though the affinity for substituted prolines was influenced by the position, size, and polar or nonpolar nature of the substituent group. At O C many analogues with affinity for proline permease exchanged with intracellular proline, but some analogues, notably trans-3-methyl- and trans-4-methyl-L-prolines, though possessing high affinity for the permease, showed an almost complete inability to exchange with intracellular proline. 相似文献
11.
The active transport of glutamine by Escherichia coli occurs via a single osmotic shock-sensitive transport system which is known to be dependent upon a periplasmic binding protein specific for glutamine. We obtained a mutant that had elevated levels of glutamine transport and overproduced the glutamine binding protein. From this strain many point mutants and deletion-carrying strains defective in glutamine transport were isolated by a variety of techniques. The genetic locus coding for the glutamine transport system, glnP, and the regulatory mutation which causes overproduction of the transport system were both shown to map at 17.7 min on the E. coli chromosome, and it was demonstrated that the glnP locus contains the structural gene for the glutamine binding protein. Evidence was also obtained that the glutamine transport system, by an unknown mechanism, plays a direct role in the catabolism of glutamate and, hence, of glutamine and proline as well. 相似文献
12.
Asp-51 and Asp-120 are important for the transport function of the Escherichia coli melibiose carrier. 下载免费PDF全文
Asp-51 and Asp-120 of the Escherichia coli melibiose carrier on plasmid pKKMB were separately replaced by amber codons and transformed into eight amber suppressor strains, producing eight amino acid substitutions for each site. Glu-51 and Glu-120 were the only replacements in the carrier that allowed the cells to ferment melibiose and that showed transport of melibiose against a concentration gradient. Revertants to Glu-51 and Glu-120 show less activity than the wild type. The Asp-51 position is more crucial for Na(+)-stimulated melibiose accumulation than is the Asp-120 site. 相似文献
13.
The melibiose carrier of Escherichia coli is predicted to possess a short NH2 terminus, 11 transmembrane segments joined by short hydrophilic regions, and a 40-residue hydrophilic carboxyl terminus of unknown function. This paper describes truncations of the carboxyl terminus at eight locations using site-specific mutagenesis to introduce stop codons. Measurement of sugar transport and cation-coupling characteristics indicate that the carboxyl tail plays no direct role in substrate recognition or energy transduction. Thirty-six amino acids could be removed from the hydrophilic carboxyl domain without the loss of sugar specificity, facilitated diffusion, uphill transport, H+-coupling or Na+-coupling characteristics. These results are consistent with the hypothesis that the sugar/cation binding site is formed by the interaction of the transmembrane helices 3, 4, 6, 9, and 10 and does not involve the carboxyl-terminal portion of the protein. When truncations were made within the hydrophobic domain of transmembrane helix 11 (truncations of 41 or more residues), the carrier was no longer found in the membrane. This suggests that the carboxyl terminus may be involved in the membrane insertion process, stabilization of the carrier within the membrane following insertion, or protection of the inserted carrier from proteolytic scavenging. A new plasmid that expresses the temperature-resistant isoform of the melibiose carrier under inducible control of a tac promoter, designated pKKMB, is also described. 相似文献
14.
Covalent photolabeling of the melibiose permease (MelB) of Escherichia coli has been undertaken with the sugar analogue [(3)H]-p-azidophenyl alpha-D-galactopyranoside ([(3)H]-alpha-PAPG) with the purpose of identifying the domains forming the MelB sugar-binding site. We show that alpha-PAPG is a high-affinity substrate of MelB (K(d) = 1 x 10(-)(6) M). Its binding to or transport by MelB is Na-dependent and is competitively prevented by melibiose or by the high-affinity ligand p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG). Membrane vesicles containing overexpressed histidine-tagged recombinant MelB were photolabeled in the presence of [(3)H]-alpha-PAPG by irradiation with UV light (lambda = 250 nm). Eighty-five percent of the radioactivity covalently associated with the vesicles was incorporated in a polypeptide corresponding to MelB monomer. MelB labeling was completely prevented by an excess of melibiose or alpha-NPG during the assay. Radioactivity analysis of CNBr cleavage or limited proteolysis products of the purified [(3)H]-alpha-PAPG-labeled transporter suggests that several domains of MelB are targets for labeling. One of the labeled CNBr cleavage products is a peptide with an apparent molecular mass of 5.5 kDa. It is shown that (i) its amino acid sequence is that of the Asp124-Met181 domain of MelB (7.5 kDa), which includes the cytoplasmic loop 4-5 connecting helices IV and V, the hydrophobic helix V, and the outer loop connecting helices V-VI, and (ii) that Arg141 in loop 4-5 is the only labeled amino acid of this peptide. Labeling of loop 4-5 provides independent evidence that this specific domain plays a significant role in MelB transport. Comparison with the well-characterized equivalent domain of LacY suggests that sugar transporters with similar structure and substrate specificity may have conserved domains involved in sugar recognition. 相似文献
15.
The Pit system of phosphate transport in Escherichia coli catalyzes a rapid exchange between the external inorganic phosphate and internal phosphate pools, including some ester phosphates which are in rapid equilibrium with the internal Pi pool. Unlike net energized uptake, the Pi exchange proceeds in energy-depleted cells in the presence of uncouplers and is not accompanied by the movement of potassium ions. In the absence of externally added phosphate, the exit of Pi from the cells is insignificant. The apparent Km for external Pi in the exchange reaction is about 7 mM (2 orders of magnitude higher than that of energized uptake), but the maximal velocity is about the same. The exchange is temperature sensitive and is affected by thiol reagents. The combined observations suggest the operation of a facilitator which is part of the Pit system. The exchange is repressed in cells grown on glucose and other phosphotransferase system substrates, but not in cells grown on other carbohydrate sources. The repression can be reversed by the addition of cyclic AMP to the medium. 相似文献
16.
Escherichia coli K-12 strains in the absence of the lactose carrier grew on the disaccharide melibiose as the sole source of carbon. The presence of 0.1 mM Li+ in the medium strongly inhibited growth of such cells, and Li+-resistant mutants appeared after several days of incubation. These mutants showed altered cation coupling to melibiose transport via the melibiose carrier. Cotransport between H+ and melibiose was lost in the mutants, although Na+-melibiose cotransport was retained. We observed no Li+-melibiose cotransport. Therefore, these mutants represent a new type of cation-coupling mutants of the melibiose carrier. 相似文献
17.
Escherichia coli mutants with altered cation recognition by the melibiose carrier. 总被引:4,自引:2,他引:2 下载免费PDF全文
Revertants that showed normal cation recognition for melibiose transport were isolated from mutants with altered cation recognition (W3133-2S and W3133-2T) of Escherichia coli. Although the original two mutants possessed a second alteration, an increased activity of the Na+(Li+)/H+ antiporter, the revertants, which possessed the normal melibiose carrier, still showed altered properties of the Na+(Li+)/H+ antiporter. These results support the view that the alterations in the melibiose carrier and in the Na+(Li+)/H+ antiporter, observed in the mutants, are not genetically linked. 相似文献
18.
A genetic determinant conferring on Escherichia coli the ability to utilize citrate as a sole source of carbon and energy was subcloned into pBR322 from a naturally occurring, citrate utilization (Cit+) plasmid, pOH30221, and was localized to a 1.6-kilobase region by cloning and subsequent deletion analysis. Genetic expression of the Cit+ determinant in E. coli minicells revealed that the Cit+ determinant encoded a single, membrane-associated polypeptide with an apparent molecular weight of 35,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This polypeptide seemed not to be synthesized as a precursor with an amino-terminal signal sequence. 相似文献
19.
The melibiose transport system of Escherichia coli catalyzes sodium--methyl 1-thio-beta-D-galactopyranoside (TMG) symport, and the cation is required not only for respiration-driven active transport but also for binding of substrate to the carrier in the absence of energy and for carrier-mediated TMG efflux. As opposed to the proton--beta-galactoside symport system [Kaczorowski, G. J., & Kaback, H. R. (1979) Biochemistry 18, 3691], efflux and exchange of TMG occur at the same rate, implying that the rates of the two processes are limited by a common step, most likely the translocation of substrate across the membrane. Furthermore, the rate of exchange, as well as efflux, is influenced by imposition of a membrane potential (delta psi; interior negative), suggesting that the ternary complex between sodium, TMG, and the porter may bear a net positive charge. Consistently, energization of the vesicles leads to a large increase in the Vmax for TMG influx, with little or no change in the apparent Km of the process. It is proposed that the sodium gradient (Na+out < Na+in) and the delta psi (interior negative) may affect different steps in the overall mechanism of active TMG accumulation in the following manner: the sodium gradient causes an increased affinity for TMG on the outer surface of the membrane relative to the inside and the delta psi facilitates a reaction involved with the translocation of the positively charged ternary complex to the inner surface of the membrane. 相似文献
20.
A hexose-phosphate transport system in Escherichia coli 总被引:22,自引:0,他引:22
H H Winkler 《Biochimica et biophysica acta》1966,117(1):231-240