首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal inversions impact genetic variation and facilitate speciation in part by reducing recombination in heterokaryotypes. We generated multiple whole-genome shotgun sequences of the parapatric species pair Drosophila pseudoobscura and Drosophila persimilis and their sympatric outgroup (Drosophila miranda) and compared the average pairwise differences for neutral sites within, just outside and far outside of the three large inversions. Divergence between D. pseudoobscura and D. persimilis is high inside the inversions and in the suppressed recombination regions extending 2.5 Mb outside of inversions, but significantly lower in collinear regions further from the inversions. We observe little evidence of decreased divergence predicted to exist in the centre of inversions, suggesting that gene flow through double crossovers or gene conversion is limited within the inversion, or selection is acting within the inversion to maintain divergence in the face of gene flow. In combination with past studies, we provide evidence that inversions in this system maintain areas of high divergence in the face of hybridization, and have done so for a substantial period of time. The left arm of the X chromosome and chromosome 2 inversions appear to have arisen in the lineage leading to D. persimilis approximately 2 Ma, near the time of the split of D. persimilis-D. pseudoobscura-D. miranda, but likely fixed within D. persimilis much more recently, as diversity within D. persimilis is substantially reduced inside and near these two inversions. We also hypothesize that the inversions in D. persimilis may provide an empirical example of the 'mixed geographical mode' theory of inversion origin and fixation, whereby allopatry and secondary contact both play a role.  相似文献   

2.
C. Segarra  M. Aguade 《Genetics》1992,130(3):513-521
Nine single copy regions located on the X chromosome have been mapped by in situ hybridization in six species of the obscura group of Drosophila. Three Palearctic species, D. subobscura, D. madeirensis and D. guanche, and three Nearctic species, D. pseudoobscura, D. persimilis and D. miranda, have been studied. Eight of the regions include known genes from D. melanogaster (Pgd, zeste, white, cut, vermilion, RNA polymerase II 215, forked and suppressor of forked) and the ninth region (lambda DsubF6) has not yet been characterized. In all six species, as in D. melanogaster, all probes hybridize to a single site. Established chromosomal arm homologies of Muller's element A are only partly supported by present results since two of the probes (Pgd and zeste) hybridize at the proximal end of the XR chromosomal arm in the three Nearctic species. In addition to the centric fusion of Muller's A (= XL) and D (= XR) elements, the metacentric X chromosome of the Nearctic species requires a pericentric inversion to account for this result. Previously proposed homologies of particular chromosomal regions of the A (= X) chromosome in the three species of the D. subobscura cluster and of the XL chromosomal arm in the three species of the D. pseudoobscura cluster are discussed in light of the present results. Location of the studied markers has changed drastically not only since the divergence between the melanogaster and obscura groups but also since the Palearctic and Nearctic species of the obscura group diverged.  相似文献   

3.
Hybrid male sterility, hybrid inviability, sexual isolation, and a hybrid male courtship dysfunction reproductively isolate Drosophila pseudoobscura and D. persimilis. Previous studies of the genetic bases of these isolating mechanisms have yielded only limited information about how much and what areas of the genome are susceptible to interspecies introgression. We have examined the genetic basis of these barriers to gene exchange in several thousand backcross hybrid male progeny of these species using 14 codominant molecular genetic markers spanning the five chromosomes of these species, focusing particularly on the autosomes. Hybrid male sterility, hybrid inviability, and the hybrid male courtship dysfunction were all associated with X-autosome interactions involving primarily the inverted regions on the left arm of the X-chromosome and the center of the second chromosome. Sexual isolation from D. pseudoobscura females was primarily associated with the left arm of the X-chromosome, although both the right arm and the center of the second chromosome also contributed to it. Sexual isolation from D. persimilis females was primarily associated with the second chromosome. The absence of isolating mechanisms being associated with many autosomal regions, including some large inverted regions that separate the strains, suggests that these phenotypes may not be caused by genes spread throughout the genome. We suggest that gene flow between these species via hybrid males may be possible at loci spread across much of the autosomes.  相似文献   

4.
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities.  相似文献   

5.
Recent studies suggest that chromosomal rearrangements play a significant role in speciation by preventing recombination and maintaining species persistence despite interspecies gene flow. Factors conferring adaptation or reproductive isolation are maintained in rearranged regions in the face of hybridization, while such factors are eliminated from collinear regions. As a direct test of this rearrangement model, we evaluated the genetic basis of hybrid male sterility in a sympatric species pair, Drosophila pseudoobscura pseudoobscura and D. persimilis, and an allopatric species pair, D. pseudoobscura bogotana and D. persimilis. Our results are consistent with the proposed model: virtually all of the sterility factors in the former pair are associated with three inverted regions, whereas sterility factors are present in the collinear regions in the latter pair. These findings indicate recombination and selection may have eliminated sterility factors outside the inverted regions between D. p. pseudoobscura and D. persimilis, suggesting chromosomal rearrangements may facilitate species persistence despite hybridization.  相似文献   

6.
Schaeffer SW  Anderson WW 《Genetics》2005,171(4):1729-1739
We have used the inversion system of Drosophila pseudoobscura to investigate how genetic flux occurs among the gene arrangements. The patterns of nucleotide polymorphism at seven loci were used to infer gene conversion events between pairs of different gene arrangements. We estimate that the average gene conversion tract length is 205 bp and that the average conversion rate is 3.4 x 10(-6), which is 2 orders of magnitude greater than the mutation rate. We did not detect gene conversion events between all combinations of gene arrangements even though there was sufficient nucleotide variation for detection and sufficient opportunity for exchanges to occur. Genetic flux across the inverted chromosome resulted in higher levels of differentiation within 0.1 Mb of inversion breakpoints, but a slightly lower level of differentiation in central inverted regions. No gene conversion events were detected within 17 kb of an inversion breakpoint suggesting that the formation of double-strand breaks is reduced near rearrangement breakpoints in heterozygotes. At least one case where selection rather than proximity to an inversion breakpoint is responsible for reduction in polymorphism was identified.  相似文献   

7.
Drosophila pseudoobscura has been intensively studied by evolutionary biologists for over 70 years. The recent publication of the genome sequence not only permits studies of comparative genomics with other dipterans but also opens the door to identifying genes associated with adaptive traits or speciation or testing for the signature of natural selection across the genome. Information on regional rates of recombination, localization of inversion breakpoints distinguishing it from its sibling species D. persimilis, and known polymorphic markers may be useful in such studies. Here, we present a molecular linkage map of four of the five major chromosome arms of D. pseudoobscura. In doing so, we order and orient several sequence contig groups, localize the inversion breakpoints on chromosome 2 to intervals of 200 kilobases, and identify one error in the published sequence assembly. Our results show that regional recombination rates in D. pseudoobscura are much higher than in D. melanogaster and significantly higher even than in D. persimilis. Furthermore, we detect a non-significant positive correlation between recombination rate and published DNA sequence variation. Finally, the online Appendix presents 200 primer sequence pairs for molecular markers that can be used for mapping of quantitative trait loci, of which 125 are known to be polymorphic within or between species.  相似文献   

8.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   

9.
The Sex-Ratio chromosome in Drosophila pseudoobscura is subject to meiotic drive. It is associated with a series of three nonoverlapping paracentric inversions on the right arm of the X chromosome. The esterase-5 gene region has been localized to section 23 within the subbasal inversion of the Sex-Ratio inversion complex, making esterase- 5 a convenient locus for molecular evolutionary analyses of the Sex- Ratio inversion complex and the associated drive system. A 504-bp fragment of noncoding, intergenic DNA from the esterase-5 gene region was amplified and sequenced from 14 Sex-Ratio and 14 Standard X chromosomes of D. pseudoobscura, and from 9 X chromosomes of its two sibling species, Drosophila persimilis and Drosophila miranda. There is extensive sequence differentiation between the Sex-Ratio and Standard chromosomal types. The common Standard chromosome is highly polymorphic, while, as expected from either the neutral mutation theory or the selective sweep hypothesis, the rarer Sex-Ratio chromosome has much less within-chromosome nucleotide polymorphism. We estimate that the Standard and Sex-Ratio chromosomes in D. pseudoobscura diverged between 700,000 and 1.3 Mya, or at least 2 million generations ago. The clustering of D. pseudoobscura Sex-Ratio chromosomes in a neighbor- joining phylogeny indicates a fairly old, monophyletic origin in this species. It appears from these data that Sex-Ratio genes were present prior to the divergence of D. pseudoobscura and D. persimilis and that both the Standard and Sex-Ratio chromosomes of D. persimilis were derived from the Standard chromosome of D. pseudoobscura after the inversion events that isolated the D. pseudoobscura Sex-Ratio chromosome.   相似文献   

10.
The divergence of Drosophila pseudoobscura from its close relatives, D. persimilis and D. pseudoobscura bogotana, was examined using the pattern of DNA sequence variation in a common set of 50 inbred lines at 11 loci from diverse locations in the genome. Drosophila pseudoobscura and D. persimilis show a marked excess of low-frequency variation across loci, consistent with a model of recent population expansion in both species. The different loci vary considerably, both in polymorphism levels and in the levels of polymorphisms that are shared by different species pairs. A major question we address is whether these patterns of shared variation are best explained by gene flow or by persistence since common ancestry. A new test of gene flow, based on patterns of linkage disequilibrium, is developed. The results from these, and other tests, support a model in which D. pseudoobscura and D. persimilis have exchanged genes at some loci. However, the pattern of variation suggests that most gene flow, although occurring after speciation began, was not recent. There is less evidence of gene flow between D. pseudoobscura and D. p. bogotana. The results are compared with recent work on the genomic locations of genes that contribute to reproductive isolation between D. pseudoobscura and D. persimilis. We show that there is a good correspondence between the genomic regions associated with reproductive isolation and the regions that show little or no evidence of gene flow.  相似文献   

11.
Different electrophoretic alleles of amylase show associations with particular chromosome 3 inversions in D. pseudoobscura and D. persimilis. Relative adult amylase activities were compared in 37, 37 and 10 strains of D. pseudoobscura, D. persimilis and D. miranda, respectively. Strains carrying the same electrophoretic allele were compared by crossing these lines individually to a reference strain carrying a different electrophoretic mobility allele. This procedure allows comparisons among species, inversions, electromorphs and strains for genetic variation in amylase activity. F2 analysis established that the activity variation co-segregates with the structural amylase locus. This type of variation could be due to either structural gene differences or differences in closely linked, cis-acting regulatory regions. Variation has been detected among and within electrophoretic mobility classes. Moreover, this variation is clearly nonrandom and reveals more of the genetic structure associated with the chromosomal inversion phylogeny of D. pseudoobscura and D. persimilis. ----Some of the findings are: (1) Similar electromorphs in D. pseudoobscura and D. persimilis usually show different activities. These species show nearly complete differentiation of amylase alleles, based on activities. (2) D. persimilis has the broadest range of variation in amylase activity, about four-fold between the highest and lowest alleles. D. pseudoobscura and D. miranda are also polymorphic for activity, but have more constrained ranges of variation. D. miranda alleles show on the average about four times the activity of D. pseudoobscura alleles. (3) Some association of electrophoretic mobility and activity has been found. Alleles 1.09 of D. persimilis, as well as 1.43 and 1.55 of D. miranda, have relatively high activity. It may be that these high activity alleles are part of an adaptation to cooler habitats. (4) Within electrophoretic classes, associations of activities with inversions have been found. These are especially strong in D. persimilis. The 1.00 alleles in the ST, KL, MD and WT inversions, the 0.92 allele in the ST and MD inversions and the 1.09 allele in the WT and KL inversions have levels of activities that depend upon the arrangement in which they are located. These results demonstrate that suppression of recombination in inversion heterokaryotypes can result in extensive genic divergence between inversions.  相似文献   

12.
Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.  相似文献   

13.
R. L. Wang  J. Hey 《Genetics》1996,144(3):1113-1126
Thirty-five period locus sequences from Drosophila pseudoobscura and its siblings species, D. p. bogotana, D. persimilis, and D. miranda, were studied. A large amount of variation was found within D. pseudoobscura and D. persimilis, consistent with histories of large effective population sizes. D. p. bogotana, however, has a severe reduction in diversity. Combined analysis of per with two other loci, in both D. p. bogotana and D. pseudoobscura, strongly suggest this reduction is due to recent directional selection at or near per within D. p. bogotana. Since D. p. bogotana is highly variable and shares variation with D. pseudoobscura at other loci, the low level of variation at per within D. p. bogotana can not be explained by a small effective population size or by speciation via founder event. Both D. pseudoobscura and D. persimilis have considerable intraspecific gene flow. A large portion of one D. persimilis sequence appears to have arisen via introgression from D. pseudoobscura. The time of this event appears to be well after the initial separation of these two species. The estimated times since speciation are one mya for D. pseudoobscura and D. persimilis and 2 mya since the formation of D. miranda.  相似文献   

14.
Inversions are portions of a chromosome where the gene order is reversed relative to a standard reference orientation. Because of reduced levels of recombination in heterokaryotypes, inversions have a potentially important effect on patterns of nucleotide variability in those genomic regions close to, or included in, the inverted fragments. Here we report sequence variation at three anonymous regions (STSs) located at different positions in relation to second-chromosome inversion breakpoints in 29 isochromosomal lines derived from an Argentinean population of Drosophila buzzatii. In agreement with previous findings in Drosophila, gene flux (crossing over and/or gene conversion) between arrangements seems to appreciably increase as we approach the middle sections of inversion 2j, and patterns of nucleotide variability within, as well as genetic differentiation between chromosome arrangements, are comparable to those observed at the molecular marker outside the inverted fragments. On the other hand, nucleotide diversity near the proximal breakpoint of inversion 2j is reduced when contrasted with that found at the other regions, particularly in the case of derived inverted chromosomes. Using the data from the breakpoint, we estimate that the inversion polymorphism is approximately 1.63 N generations old, where N is the effective population size. An excess of low-frequency segregating polymorphisms is detected; mostly in the ancestral 2st arrangement and probably indicating a population expansion that predates the coalescent time of inversion 2j. Heterogeneity in mutation rates between the markers linked to the inversions may be sufficient to explain the different levels of nucleotide diversity observed. When considered in the context of other studies on patterns of variation relative to physical distance to inversion breakpoints, our data appear to be consistent with the conclusion that inversions are unlikely to be "long-lived" balanced polymorphisms.  相似文献   

15.
Drosophila subobscura is a paleartic species of the obscura group with a rich chromosomal polymorphism. To further our understanding on the origin of inversions and on how they regain variation, we have identified and sequenced the two breakpoints of a polymorphic inversion of D. subobscura—inversion 3 of the O chromosome—in a population sample. The breakpoints could be identified as two rather short fragments (~300 bp and 60 bp long) with no similarity to any known transposable element family or repetitive sequence. The presence of the ~300‐bp fragment at the two breakpoints of inverted chromosomes implies its duplication, an indication of the inversion origin via staggered double‐strand breaks. Present results and previous findings support that the mode of origin of inversions is neither related to the inversion age nor species‐group specific. The breakpoint regions do not consistently exhibit the lower level of variation within and stronger genetic differentiation between arrangements than more internal regions that would be expected, even in moderately small inversions, if gene conversion were greatly restricted at inversion breakpoints. Comparison of the proximal breakpoint region in species of the obscura group shows that this breakpoint lies in a small high‐turnover fragment within a long collinear region (~300 kb).  相似文献   

16.
Inversion polymorphisms have been linked to a variety of fundamental biological and evolutionary processes. Yet few studies have used large-scale genomic sequencing to directly compare the haplotypes associated with the standard and inverted chromosome arrangements. Here we describe the targeted genomic sequencing and comparison of haplotypes representing alternative arrangements of a common inversion polymorphism linked to a suite of phenotypes in the white-throated sparrow (Zonotrichia albicollis). More than 7.4 Mb of genomic sequence was generated and assembled from both the standard (ZAL2) and inverted (ZAL2(m)) arrangements. Sequencing of a pair of inversion breakpoints led to the identification of a ZAL2-specific segmental duplication, as well as evidence of breakpoint reusage. Comparison of the haplotype-based sequence assemblies revealed low genetic differentiation outside versus inside the inversion indicative of historical patterns of gene flow and suppressed recombination between ZAL2 and ZAL2(m). Finally, despite ZAL2(m) being maintained in a near constant state of heterozygosity, no signatures of genetic degeneration were detected on this chromosome. Overall, these results provide important insights into the genomic attributes of an inversion polymorphism linked to mate choice and variation in social behavior.  相似文献   

17.
18.
R. L. Wang  J. Wakeley    J. Hey 《Genetics》1997,147(3):1091-1106
The divergence of Drosophila pseudoobscura and close relatives D. persimilis and D. pseudoobscura bogotana has been studied using comparative DNA sequence data from multiple nuclear loci. New data from the Hsp82 and Adh regions, in conjunction with existing data from Adh and the Period locus, are examined in the light of various models of speciation. The principal finding is that the three loci present very different histories, with Adh indicating large amounts of recent gene flow among the taxa, while little or no gene flow is apparent in the data from the other loci. The data were compared with predictions from several isolation models of divergence. These models include no gene flow, and they were found to be incompatible with the data. Instead the DNA data, taken together with other evidence, seem consistent with divergence models in which natural selection acts against gene flow at some loci more than at others. This family of models includes some sympatric and parapatric speciation models, as well as models of secondary contact and subsequent reinforcement of sexual isolation.  相似文献   

19.
Runcie DE  Noor MA 《Genetica》2009,136(1):5-11
The X-chromosome inversion, Xe, distinguishes Drosophila mojavensis and D. arizonae. Earlier work mapped the breakpoints of this inversion to large intervals and provided hypotheses for the locations of the breakpoints within 3000-bp intergenic regions on the D. mojavensis genome sequence assembly. Here, we sequenced these regions directly in the putatively ancestral D. arizonae X-chromosome. We find that the two inversion breakpoints are near an inverted gene duplication and a common repetitive element, respectively, and these features were likely present in the non-inverted ancestral chromosome on the D. mojavensis lineage. Contrary to an earlier hypothesis, the inverted gene duplication appears to predate the inversion. We find no sequence similarity between the breakpoint regions in the D. mojavensis ancestor, excluding an ectopic-exchange model of chromosome rearrangements. We also found no evidence that staggered single-strand breaks caused the inversion. We suggest these features may have contributed to the chromosomal breakages resulting in this inversion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
A huge amount of data seem to confirm the adaptive value of inversions in Drosophila. The inhibition of recombination in heterokaryotypes mediated by inversions seems fundamental in maintaining their adaptive role. This study shows that recombination is highly suppressed in Drosophila subobscura because of chromosomal inversions, not only inside the inversions but also outside them. It seems that the region outside the inversion where recombination is inhibited is asymmetrical and independent of the inversion length. Despite the difficulty of crossovers taking place near inversion breakpoints, the only two recombination events detected inside inversions were located close to the breakpoint. Thus, selection could be largely responsible for the recombination reduction maintaining sets of adaptive alleles inside the inverted region. Heterokaryotype descendants were always in higher frequency than inbred or outbred homokaryotypes, regardless of the geographical origin of the chromosome, suggesting that chromosomes carrying the same arrangement, although with a different set of alleles for neutral markers, could be submitted to the same selection processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号