首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of Dicer-substrate small interfering RNAs (DsiRNAs) has been pursued in recent years because these molecules exhibit a much more potent gene-silencing effect than 21-nucleotide (nt) siRNAs. In the present study, we designed eight different types of amino-modified DsiRNAs and a palmitic acid-conjugated DsiRNA expected to result in improved biological properties of siRNAs, including their stability against nuclease degradation, membrane permeability, and RNAi efficacy. The DsiRNAs were modified with an amine at the 5'- and/or 3'-end of the sense and/or antisense strand. Dicer enzyme cleaved most of the amino-modified DsiRNAs to lead to the release of 21-nt siRNA; some of them, however, were not or partly cleaved. All amino-modified DsiRNAs exhibited strong resistance against nuclease degradations. Among the amino-modified DsiRNAs, the DsiRNA modified with an amine restricted at the 3'-end of the sense strand showed the most enhanced gene-silencing effect and maintained its potent gene suppression after one week of cell transfection against Renilla luciferase activity. For further improvement, palmitic acid was conjugated to DsiRNA at the 3'-end of the sense strand (C16-DsiRNA) to facilitate the membrane permeability and potent gene-silencing activity. The C16-DsiRNA showed enhanced membrane permeability to HeLa cells. The C16-DsiRNA exhibited extremely high inhibition of Renilla luciferase activity.  相似文献   

2.
3.
Small interfering RNA (siRNA) molecules achieve sequence-specific gene silencing through the RNA interference (RNAi) mechanism. Here, live-cell and live-animal bioluminescent imaging (BLI) is used to directly compare luciferase knockdown by unmodified and nuclease-stabilized siRNAs in rapidly (HeLa) and slowly (CCD-1074Sk) dividing cells to reveal the impact of cell division and siRNA nuclease stability on the kinetics of siRNA-mediated gene silencing. Luciferase knockdown using unmodified siRNAs lasts approximately 1 week in HeLa cells and up to 1 month in CCD-1074Sk cells. There is a slight increase in the duration of luciferase knockdown by nuclease-stabilized siRNAs relative to unmodified siRNAs after cationic lipid transfection, but this difference is not observed after electroporation. In BALB/cJ mice, a fourfold increase in maximum luciferase knockdown is observed after hydrodynamic injection (HDI) of nuclease-stabilized siRNAs relative to unmodified siRNAs, yet the overall kinetics of the recovery after knockdown are nearly identical. By using a mathematical model of siRNA-mediated gene silencing, the trends observed in the experimental data can be duplicated by changing model parameters that affect the stability of the siRNAs before they reach the cytosolic compartment. Based on these findings, we hypothesize that the stabilization advantages of nuclease-stabilized siRNAs originate primarily from effects prior to and during internalization before the siRNAs can interact with the intracellular RNAi machinery.  相似文献   

4.
Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.  相似文献   

5.
Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC), the key protein complex of RNA interference (RNAi), is of great importance to the development of siRNAs with improved biological and potentially therapeutic function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 ? using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to -5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3'-end increased activity over that of wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation.  相似文献   

6.
In this study, a number of 2′,4′-BNA- and 2′,4′-BNANC-modified siRNAs were designed and synthesized. Their thermal stability, nuclease resistance and gene silencing properties against cultured mammalian cells were evaluated and compared with those of natural siRNAs. The 2′,4′-BNA- and 2′,4′-BNANC-modified siRNAs (named siBNA and siBNANC, respectively) showed very high Tm values, were remarkably stable in serum sample and showed promising RNAi properties equal to those exhibited by natural siRNAs. Thermally stable siBNAs composed of slightly modified sense and antisense strands were capable of suppressing gene expression equal to that of natural siRNA. A number of modifications on the sense strand by 2′,4′-BNA or 2′,4′-BNANC, either consecutively or separated by natural RNA nucleotides, is tolerable in RNAi machinery. Modifications at the Argonauate (Ago2) cleavage site of the sense strand (9–11th positions from the 5′-end of the sense strand) produced variable results depending on siRNA composition. Mostly, modification at the 10th position diminished siRNA activity. In moderately modified siRNAs, modification at the 11th position displayed usual RNAi activity, while modification at the 9th position showed variable results depending on siRNA composition.  相似文献   

7.
RNA interference (RNAi) is a gene-regulating system that is controlled by external short interfering RNAs (siRNAs). Sequence selective gene silencing by siRNA shows promise in clinical research. However, there have been few efficient methods for delivering siRNAs to target cells. In this study, we propose a novel type of RNA duplex-bindable molecule with an oligodiaminosaccharide structure. These 2,6-diamino-2,6-dideoxy-(1-4)-β-d-galactopyranose oligomers (oligodiaminogalactoses; ODAGals) conjugated with α-tocopherol (vitamin E; VE) or a VE analog were designed as novel siRNA-bindable molecules that can be utilized to deliver RNAi drugs to the liver. Among these compounds, the VE analog-bound ODAGal was suggested to bind to RNA duplexes without inhibiting RNAi activity.  相似文献   

8.
In RNA interference (RNAi), short double-stranded RNA (known as siRNA) inhibits expression from homologous genes. Clinical or pre-clinical use of siRNAs is likely to require stabilizing modifications because of the prevalence of intracellular and extracellular nucleases. In order to examine the effect of modification on siRNA efficacy and stability, we developed a new method for synthesizing stereoregular boranophosphate siRNAs. This work demonstrates that boranophosphate siRNAs are consistently more effective than siRNAs with the widely used phosphorothioate modification. Furthermore, boranophosphate siRNAs are frequently more active than native siRNA if the center of the antisense strand is not modified. Boranophosphate modification also increases siRNA potency. The finding that boranophosphate siRNAs are at least ten times more nuclease resistant than unmodified siRNAs may explain some of the positive effects of boranophosphate modification. The biochemical properties of boranophosphate siRNAs make them promising candidates for an RNAi-based therapeutic.  相似文献   

9.
Chu CY  Rana TM 《RNA (New York, N.Y.)》2008,14(9):1714-1719
RNA interference (RNAi) is a gene-silencing mechanism by which a ribonucleoprotein complex, the RNA-induced silencing complex (RISC) and a double-stranded (ds) short-interfering RNA (siRNA), targets a complementary mRNA for site-specific cleavage and subsequent degradation. While longer dsRNA are endogenously processed into 21- to 24-nucleotide (nt) siRNAs or miRNAs to induce gene silencing, RNAi studies in human cells typically use synthetic 19- to 20-nt siRNA duplexes with 2-nt overhangs at the 3′-end of both strands. Here, we report that systematic synthesis and analysis of siRNAs with deletions at the passenger and/or guide strand revealed a short RNAi trigger, 16-nt siRNA, which induces potent RNAi in human cells. Our results indicate that the minimal requirement for dsRNA to trigger RNAi is an ~42 Å A-form helix with ~1.5 helical turns. The 16-nt siRNA more effectively knocked down mRNA and protein levels than 19-nt siRNA when targeting the endogenous CDK9 gene, suggesting that 16-nt siRNA is a more potent RNAi trigger. In vitro kinetic analysis of RNA-induced silencing complex (RISC) programmed in HeLa cells indicates that 16-nt siRNA has a higher RISC-loading capacity than 19-nt siRNA. These results suggest that RISC assembly and activation during RNAi does not necessarily require a 19-nt duplex siRNA and that 16-nt duplexes can be designed as more potent triggers to induce RNAi.  相似文献   

10.
The effects of thiophosphate substitutions on native siRNA gene silencing   总被引:4,自引:0,他引:4  
RNA mediated interference has emerged as a powerful tool in controlling gene expression in mammalian cells. We investigated the gene silencing properties of six thiophosphate substituted siRNAs (all based on a commercial luciferase medium silencer) compared to that of unmodified siRNA. We also examined the cytotoxicity and dose-response using several thiophosphate modified siRNAs with unmodified siRNA. Our results show that two thiophosphate siRNA sequences convert from medium to high silencers with the addition of four randomly placed thiophosphates. Both thiophosphate siRNAs have a statistically significant difference in luciferase gene silencing (5% and 6% activity) relative to the unmodified native medium silencer referred to as siRNA-2 (18% activity) and four other thiophosphate siRNAs that maintain their medium silencing capability. This indicates that specific thiophosphate substitutions may alter native siRNA function. Further, this shows that thiophosphate siRNAs with the same nucleotide sequence but with different sulfur modification positions have different silencing effects. Both the native siRNA and the thio siRNAs showed a concentration dependent relationship, i.e., with concentration increase, the luciferase gene silencing effect also increased. Confirming cytotoxicity experiments showed no significant changes when HeLa cells were treated with 10nM thiophosphate siRNAs over the course of several days. These results suggest that specific placement of thiophosphates could play an important role in the development of siRNAs as therapeutics by engineering in properties such as strength of binding, nuclease sensitivity, and ultimately efficacy.  相似文献   

11.
RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5′ end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5′ end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.  相似文献   

12.
We have developed chemically modified siRNAs and miRNAs bearing urea/thiourea-bridged aromatic compounds at their 3′-end for RNAi therapy. Chemically modified RNAs possessing urea/thiourea-bridged aromatic compounds instead of naturally occurring dinucleotides at the 3′-overhang region were easily prepared in good yields and were more resistant to nucleolytic hydrolysis than unmodified RNA. siRNAs containing urea or thiourea derivatives showed the desired knockdown effect. Furthermore, modified miR-143 duplexes carrying the urea/thiourea compounds in the 3′-end of each strand were able to inhibit the growth of human bladder cancer T24 cells.  相似文献   

13.
The tumor suppressor gene pten encodes a lipid phosphatase that dephosphorylates D3 of phosphatidylinositol(3,4,5)trisphosphate, producing phosphatidylinositol(4,5)bisphosphate. Although PTEN has been implicated in cell adhesion and migration, the underlying molecular mechanism is unknown. To investigate the role of PTEN in cell adhesion, we designed three different siRNAs (siRNA PTEN-a, siRNA PTEN-b, and siRNA PTEN-c) and transfected into 293T cells. Two days later, only the cells transfected with siRNA PTEN-b became round and detached from the culture dishes, whereas cells transfected with a control siRNA against GFP or the two other siRNAs against PTEN did not. Evaluation of the RNAi effect revealed that siRNA PTEN-b inhibited >95% of PTEN expression, the most effective among the three siRNAs. To check for non-specific effects such as interferon response and inhibition of off-target genes, we then used quantitative PCR analysis and DNA microarray analysis. None was detected, indicating that the RNAi system was highly specific. Immunofluorescence studies using PTEN-knockdown HeLa cells revealed that the loss of adhesion was accompanied by a reduction in the number of focal adhesion plaques and disorganization of the actin cytoskeleton. Transient and near-complete loss of PTEN expression induces loss of adhesion of the cells.  相似文献   

14.
In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA sequence preference and in accordance with which highly effective siRNAs essential for systematic mammalian functional genomics can be readily designed. These rules indicate that siRNAs which simultaneously satisfy all four of the following sequence conditions are capable of inducing highly effective gene silencing in mammalian cells: (i) A/U at the 5′ end of the antisense strand; (ii) G/C at the 5′ end of the sense strand; (iii) at least five A/U residues in the 5′ terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nt in length. siRNAs opposite in features with respect to the first three conditions give rise to little or no gene silencing in mammalian cells. Essentially the same rules for siRNA sequence preference were found applicable to DNA-based RNAi in mammalian cells and in ovo RNAi using chick embryos. In contrast to mammalian and chick cells, little siRNA sequence preference could be detected in Drosophila in vivo RNAi.  相似文献   

15.
Chemically modified siRNAs are expected to have resistance toward nuclease degradation and good thermal stability in duplex formation for in vivo applications. We have recently found that 2'-OMe-4'-thioRNA, a hybrid chemical modification based on 2'-OMeRNA and 4'-thioRNA, has high hybridization affinity for complementary RNA and significant resistance toward degradation in human plasma. These results prompted us to develop chemically modified siRNAs using 2'-OMe-4'-thioribonucleosides for therapeutic application. Effective modification patterns were screened with a luciferase reporter assay. The best modification pattern of siRNA, which conferred duration of the gene-silencing effect without loss of RNAi activity, was identified. Quantification of the remaining siRNA in HeLa-luc cells using a Heat-in-Triton (HIT) qRT-PCR revealed that the intracellular stability of the siRNA modified with 2'-OMe-4'-thioribonucleosides contributed significantly to the duration of its RNAi activity.  相似文献   

16.
Efficiencies of a nuclease resistant antisense oligonucleotide and of siRNA both being targeted against the green fluorescent protein stably expressed in HeLa cells are compared in cell cultures and in xenografted mice. Using Cytofectin GSV to deliver both inhibitors, the siRNAs appear to be quantitatively more efficient and its effect is lasting for a longer time in cell culture. In mice, we observed an activity of siRNAs but not of antisense oligonucleotides. The absence of efficiency of antisense oligonucleotides is probably due to their lower resistance to nuclease degradation.  相似文献   

17.
Single-stranded antisense siRNAs guide target RNA cleavage in RNAi   总被引:75,自引:0,他引:75  
Small interfering RNAs (siRNAs) are the mediators of mRNA degradation in the process of RNA interference (RNAi). Here, we describe a human biochemical system that recapitulates siRNA-mediated target RNA degradation. By using affinity-tagged siRNAs, we demonstrate that a single-stranded siRNA resides in the RNA-induced silencing complex (RISC) together with eIF2C1 and/or eIF2C2 (human GERp95) Argonaute proteins. RISC is rapidly formed in HeLa cell cytoplasmic extract supplemented with 21 nt siRNA duplexes, but also by adding single-stranded antisense RNAs, which range in size between 19 and 29 nucleotides. Single-stranded antisense siRNAs are also effectively silencing genes in HeLa cells, especially when 5'-phosphorylated, and expand the repertoire of RNA reagents suitable for gene targeting.  相似文献   

18.
Gene silencing by RNA interference (RNAi) operates at the level of mRNA that is targeted for destruction with exquisite sequence specificity. In principle, any disease-related mRNA sequence is a putative target for RNAi-based therapeutics. To develop this therapeutic potential, it is necessary to develop ways of inducing RNAi by clinically acceptable delivery procedures. Here, we ask if inducers of RNAi can be delivered to human cells via a gel-based medium. RNAi was induced using synthetic small interfering RNAs (siRNAs), which bypass the need for expression vectors and carry the added bonus of high potency and immediate efficacy. Established cultures of human cells of normal and tumor origin were overlaid with an agarose/liposome/siRNA gel formulation without adverse effects on cell viability or proliferation. Epithelial cancer cells (but not normal human fibroblasts) proved vulnerable to specific siRNAs delivered via the agarose/liposome/siRNA formulation. Moreover, proapoptotic siRNAs induced apoptosis of cervical carcinoma cells (treated with human papillomavirus [HPV] E7 siRNA) and of colorectal carcinoma cells (treated with Bcl-2 siRNA). Thus, we demonstrate successful topical gel-based delivery of inducers of RNAi to human epithelial cancer cells. Topical induction of RNAi opens an important new therapeutic approach for treatment of human diseases, including cervical cancer and other accessible disorders.  相似文献   

19.
Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5′ end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号