首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the preceding paper (Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., and Brewer, C.F. (1987) J. Biol. Chem. 262, 1288-1293), we have demonstrated that certain high mannose and bisected hybrid type glycopeptides are bivalent for concanavalin A (ConA) binding. In the present study, we have investigated the interactions of ConA with a series of synthetic nonbisected and bisected complex type oligosaccharides and related glycopeptides. The modes of binding of the carbohydrates were studied by nuclear magnetic relaxation dispersion techniques, and their affinities were determined by hemagglutination inhibition measurements. We find that certain bisected complex type oligosaccharides are capable of binding and precipitating the lectin. The corresponding nonbisected analogs, however, bind but do not precipitate the protein. The stoichiometries of the precipitin reactions were investigated by quantitative precipitation analyses. The equivalence zones (regions of maximum precipitation) of the precipitin curves indicate that the bisected complex type oligosaccharides are bivalent for lectin binding. Data for the nonbisected analogs are consistent with their being univalent. The nuclear magnetic relaxation dispersion and precipitation data indicate that nonbisected and bisected complex type carbohydrates bind with different mechanisms and conformations. The former class binds by extended site interactions with the protein involving the 2 alpha-mannose residues on the alpha(1-6) and alpha(1-3) arms of the core beta-mannose residue. The latter class binds by only 1 of these 2 mannose residues, which leaves the other mannose residue free to bind to a second ConA molecule. The role of the bisecting GlcNAc residue in affecting the binding properties of complex type carbohydrates to ConA is discussed, and the results are related to the possible structure-function properties of complex type glycopeptides on the surface of cells.  相似文献   

2.
We have investigated the binding of a series of high affinity asparagine-linked glycopeptides, including high mannose type and a bisected hybrid type, and several related synthetic oligosaccharides, to Ca2+- Mn2+-concanavalin A (ConA), using solvent proton nuclear relaxation dispersion (NMRD) measurements. We find that binding of the glycopeptides induces a common smaller decrease in the NMRD profile of ConA compared to that induced by monosaccharide binding. This effect is also observed with a synthetic analog of complex-type carbohydrates, hepta, which also shows enhanced affinity for the protein relative to monosaccharide binding. The high affinity of the glycopeptides and hepta, and their unique effects on the NMRD profile, are mimicked by binding of the trimannosyl oligosaccharide, 3,6-di-O-(alpha-D-mannopyranosyl)-D-mannose, which is present as a structural element in all of the glycopeptides and synthetic oligosaccharides. However, adding a so-called bisecting N-acetyl-D-glucosamine residue to the trimannosyl oligosaccharide greatly reduces its binding affinity and produces a decrease in the NMRD profile of the protein similar to that observed for monosaccharide binding. These results indicate that the trimannosyl oligosaccharide is a unique moiety recognized by the lectin for high affinity and extended site binding, and the presence of a bisecting N-acetyl-D-glucosamine residue in the trimannosyl oligosaccharide eliminates this type of interaction. The results also demonstrate that ConA primarily binds to the outer trimannosyl regions of high mannose and bisected hybrid-type glycopeptides compared to the central trimannosyl region of complex glycopeptides. Two mechanisms of enhanced affinity binding of saccharides and glycopeptides to ConA are discussed.  相似文献   

3.
The affinity of concanavalin A (Con A) for simple saccharides has been known for over 50 years. However, the specificity of binding of Con A with cell-surface related carbohydrates has only recently been examined in detail. Brewer and coworkers [J Biol Chem (1986) 261:7306–10; J Biol Chem (1987) 262:1288–93; J Biol Chem (1987) 262:1294–99] have recently studied the binding interactions of a series of oligomannose and bisected hybrid type glycopeptides and complex type glycopeptides and oligosaccharides with Con A. The relative affinities of the carbohydrates were determined using hemagglutination inhibition measurements, and their modes of binding to the lectin examined by nuclear magnetic relaxation dispersion (NMRD) spectroscopy and quantitative precipitation analyses. The equivalence zones (regions of maximum precipitation) of the precipitin curves of Con A and the carbohydrates indicate that certain oligomannose and bisected hybrid type glycopeptides are bivalent for lectin binding. From the NMRD and precipitation data, two protein binding sites on each glycopeptide have been identified and characterized. Certain bisected complex type oligosaccharides also bind and precipitate Con A, while the corresponding nonbisected analogs bind but do not precipitate the protein. The precipitation data indicate that the bisected complex type oligosaccharides are also bivalent for lectin binding, while the nonbisected analogs are univalent. The NMRD and precipitation data are consistent with different mechanisms of binding of nonbisected and bisected complex type carbohydrates to Con A, including different conformations of the bound saccharides.Abbreviations Con A Concanavalin A with unspecified metal ion content - CMPL Con A with Mn2+ and Ca2+ at the S1 and S2 sites respectively, in the locked conformation [12]; trisaccharide1, 3,6-di-O-(-d-mannopyranosyl)-d-mannose - -MDM methyl -d-mannopyranoside - NMRD nuclear magnetic relaxation dispersion, the magnetic field dependence of nuclear magnetic relaxation rates, in the present case, the longitudinal relaxation rate, 1/T1, of solvent protons  相似文献   

4.
Precipitation of concanavalin A by a high mannose type glycopeptide   总被引:1,自引:0,他引:1  
The interactions of a high mannose type glycopeptide with Concanavalin A has been investigated by quantitative precipitation analysis. The equivalence points of the precipitin curves indicate that the glycopeptide is bivalent for lectin binding. These results and others demonstrate that there are two lectin binding sites per molecule of the glycopeptide: one site on the alpha (1-6) arm of the core beta-mannose residue involving a trimannosyl moiety, and another site on the alpha (1-3) arm of the core beta-mannose residue involving an alpha (1-2) mannobiosyl group. The two sites are unequal in their affinities, and bind by different mechanisms. These results are related to the possible structure-function properties of high mannose type of glycopeptides on the surface of cells.  相似文献   

5.
We have previously demonstrated that a high mannose type glycopeptide is bivalent for binding Concanavalin A (Con A) and can precipitate the lectin (Bhattacharyya L. and Brewer, C.F. (1986) Biochem. Biophys. Res. Commun. 137, 670-674). The present results show that a triantennary complex type oligosaccharide containing nonreducing terminal galactose residues can precipitate the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina indica (EIL). The interactions of the oligosaccharide with EIL was investigated by quantitative precipitin analysis. The equivalence point of the precipitin curve indicated that the glycopeptide is trivalent for EIL binding. These results indicate that each arm of the oligosaccharide can independently bind separate lectin molecules leading to precipitation of the complex. These findings are discussed in terms of the possible biological structure-function properties of complex type oligosaccharides.  相似文献   

6.
We have previously shown that certain oligomannose and bisected hybrid type glycopeptides are bivalent for binding to concanavalin A (Con A) [Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., & Brewer, C. F. (1987) J. Biol. Chem. 262, 1288-1293]. Each glycopeptide gives a quantitative precipitation profile with the protein which consists of a single peak that corresponds to the binding stoichiometry of glycopeptide to protein monomer (1:2). We have shown that the affinities of the primary and secondary sites of the glycopeptides influence their extent of precipitation with the lectin [Bhattacharyya, L., & Brewer, C. F. (1988) Eur. J. Biochem. (in press)]. In the present study, we demonstrate that equimolar mixtures of any two of the glycopeptides result in a quantitative precipitation profile which shows two protein peaks. Using radiolabeled glycopeptides, the precipitation profiles of the individual glycopeptides were determined. The results show that each glycopeptide forms its own precipitation profile with the protein which is independent of the profile of the other glycopeptide. For mixtures containing an equimolar ratio of two glycopeptides, the glycopeptide with lower affinity shows a precipitation maximum at a lower concentration than the one with higher affinity. However, this can be reversed by increasing the ratio of the lower affinity glycopeptide in the mixture. Thus, the relative precipitation maxima of the glycopeptides are determined by mass-action equilibria involving competitive binding of the two carbohydrates to the protein. These equilibria, in turn, are sensitive to the relative amounts and affinities of the carbohydrates at both their primary and secondary sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have recently demonstrated that certain oligomannose and bisected hybrid type glycopeptides and bisected complex type oligosaccharides are bivalent for binding to concanavalin A and can precipitate the lectin [Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., & Brewer, C.F. (1987) J. Biol. Chem. 262, 1288-1293; Bhattacharyya, L., Haraldsson, M., & Brewer, C.F. (1987) J. Biol. Chem. 262, 1294-1299]. The present results show that tri- and tetraantennary complex type oligosaccharides containing nonreducing terminal galactose residues, and a related triantennary glycopeptide, precipitate the D-galactose-specific lectins from Ricinus communis (agglutinin I) (RCA-I), Erythrina indica (EIL), Erythrina arborescens (EAL), and Glycine max (soybean) (SBA). Nonbisected and bisected biantennary complex type oligosaccharides can precipitate SBA, which is a tetrameric lectin, but not RCA-I, EIL, or EAL, which are dimeric lectins. The relative affinities of the oligosaccharides and glycopeptide were determined by hemagglutination inhibition measurements and their valencies by quantitative precipitin analyses. The equivalence points of the precipitin curves indicate that the tri- and tetraantennary oligosaccharides are tri- and tetravalent, respectively, for EIL, EAL, and SBA binding. However, the oligosaccharides are all trivalent for RCA-I binding due apparently to the larger size of the monomeric subunit of the lectin. The triantennary glycopeptide was also trivalent for RCA-I and EIL binding. Biantennary oligosaccharides with adequate chain lengths were found to be bivalent for binding to SBA; those with shorter chains did not precipitate the lectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Certain oligomannose type glycopeptides have previously been shown to be bivalent for binding to concanavalin A, and to give quantitative precipitation profiles with the protein that consist of single peaks which correspond to the binding stoichiometry of glycopeptide to protein monomer (1:2) (Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., and Brewer, C.F. (1987) J. Biol. Chem. 262, 1288-1293). In the present study, equimolar mixtures of two oligomannose type glycopeptides, a Man-6 and a Man-9 glycopeptide, gives a quantitative precipitation profile which shows two protein peaks. Each glycopeptide was radiolabelled with 3H or 14C, and the the precipitation profiles of the individual glycopeptides in the mixture determined. The results show that the radioactivity profile of the Man-6 glycopeptide corresponds to the first protein peak, while the radioactivity profile of the Man-9 glycopeptide corresponds to the second protein peak. The results indicate that each glycopeptide forms a unique homogeneous cross-linked lattice with the lectin which excludes the lattice of the other glycopeptide.  相似文献   

9.
Twelve 14C-acetylated glycopeptides have been subjected to affinity chromatography on concanvalin A (Con A)--Sepharose at pH 7.5. The elution profiles could be classified into four distinct patterns. The first pattern showed no retardation of glycopeptide on the column and was elicited with a glycopeptide having three peripheral oligosaccharide chains: (abstract:see text). Such glycopeptides have only a single mannose residue capable of interacting with Con A--Sepharose; an interacting mannose residue is either an alpha-linked nonreducing terminal residue or an alpha-linked 2-O-substituted residue. The second type of profile showed a retarded elution of glycopeptide with buffer lacking methyl alpha-D-glucopyranoside (indicative of weak interaction with the column) and was given by glycopeptides with the structures: (abstract: see text) where R1 is either H or a sialyl residue. The third profile type showed tight binding of glycopeptide to Con A--Sepharose and elution as a sharp peak with 0.1 M methyl alpha-D-glucopyranoside; glycopeptides giving this pattern had the structures: (abstract: see text) where R2 is either H, glcNAc, Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc. These glycopeptides all have two interacting mannose residues, the mimimum required for binding to the column; one of these mannose residues must, however, be a terminal residue to obtain tight binding and sharp elution. The fourth profile type showed tight binding of glycopeptide to the column but elution with 0.1 M methyl alpha-D-glucopyranoside resulted in a broad peak indicating very tight binding; glycopeptides showing this behaviour had the structures: (abstract: see text) where R3 is either GlcNAc,Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc.Therefore it can be concluded that although a minimum of two interacting mannose residues is required for binding to Con A--Sepharose, the residues linked to these mannoses can either strengthen or weaken binding to the column.  相似文献   

10.
We recently reported that tri- and tetraantennary complex type oligosaccharides with nonreducing terminal galactose residues and the triantennary asialofetuin glycopeptide can bind and precipitate certain galactose specific lectins (L. Bhattacharyya, and C.F. Brewer (1986) Biochem. Biophys. Res. Commun. 141, 963-967; L. Bhattacharyya, M. Haraldsson, and C.F. Brewer (1988) Biochemistry 27, 1034-1041). The present study investigates the binding interactions of two of these lectins, those from Erythrina indica and Ricinus communis (Agglutinin I), with mono-, bi-, and triantennary synthetic cluster glycosides, which have little structural resemblance to complex type oligosaccharides other than they possess nonreducing terminal galactose residues (R.T. Lee, P. Lin, and Y.C. Lee (1984) Biochemistry 23, 4255-4261). The enhanced affinities of the bi- and triantennary glycosides relative to the monoantennary glycoside for the two lectins are consistent with an increase in the probability of binding due to multiple binding residues in the multiantennary glycosides. The triantennary glycoside is capable of precipitating the two lectins, and quantitative precipitation data indicate that it is a trivalent ligand. The results show that the binding and precipitation activities of complex type oligosaccharides with these lectins is due solely to the presence of multiple terminal galactose residues and not to the overall structures of the oligosaccharides.  相似文献   

11.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with alpha-methylmannoside, constitute about 25--30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chloride columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with alpha-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

12.
Human beta-hexosaminidase (EC 3.2.1.52) is a lysosomal enzyme that hydrolyzes terminal N-acetylhexosamines from GM2 ganglioside, oligosaccharides, and other carbohydrate-containing macromolecules. There are two major forms of hexosaminidase: hexosaminidase A, with the structure alpha(beta a beta b), and hexosaminidase B, 2(beta a beta b). Like other lysosomal proteins, hexosaminidase is targeted to its destination via glycosylation and processing in the rough endoplasmic reticulum and Golgi apparatus. Phosphorylation of specific mannose residues allows binding of the protein to the phosphomannosyl receptor and transfer to the lysosome. In order to define the structure and placement of the oligosaccharides in mature hexosaminidase and thus identify candidate mannose 6-phosphate recipient sites, the major tryptic/chymotryptic glycopeptides from each isozyme were purified by reverse-phase high-performance liquid chromatography. Two major concanavalin A binding glycopeptides, localized to the beta b chain, and one non concanavalin A binding glycopeptide, localized to the beta a chain, were found associated with the beta-subunit in both hexosaminidase A and hexosaminidase B. A single major concanavalin A binding glycopeptide was found to be associated with the alpha subunit of hexosaminidase A. The oligosaccharide structures were determined by nuclear magnetic resonance spectrometry. Two of them, the alpha and one of the beta b glycans, contained a Man3-GlcNAc2 structure, while the remaining one on the beta b chain was composed of a mixture of Man5-7-GlcNAc2 glycans. The unique glycopeptide associated with the beta a chain contained a single GlcNAc residue. Thus, all three mature polypeptides comprising the alpha and beta subunits of hexosaminidase contain carbohydrate, the structures of which have the appearance of being partially degraded in the lysosome. In the alpha chain we found only one possible site for in vivo phosphorylation. In the beta it is unclear if only one or all three of the sites could have contained phosphate. However, mature placental hexosaminidase A and B can be rephosphorylated in vitro. This requires the presence of an oligosaccharide containing an alpha 1,2-linked mannose residue. Only the single Man6-7 (of the Man5-7-GlcNAc2 glycans) containing site on the beta b chain retains this type of residue. Therefore, this site may act as the sole in vitro substrate in both of the mature isozymes for the phosphotransferase.  相似文献   

13.
A monosaccharide-modified β-loop peptide library displayed on phage has been constructed and used for the screening of glycopeptide ligands against a carbohydrate-binding protein. The β-loop peptide library was designed and modified with a mannose derivative on phage. The glycopeptide ligands to concanavalin A (ConA), a mannose-binding protein, were obtained from the mannose-modified peptide phage library. The amino acids neighboring the mannose unit of glycopeptides not only reinforced the binding affinity but also gave diverse binding characteristics.  相似文献   

14.
IL-2, a lectin with specificity for high mannose glycopeptides   总被引:6,自引:0,他引:6  
Utilizing a solid phase binding assay, we have demonstrated that rIL-2 binds with high affinity to the human urinary glycoprotein uromodulin. This binding is specifically inhibited by the saccharides diacetylchitobiose and Man(alpha 1-3)(Man(alpha 1-6]Man-O-methyl and by the high mannose glycopeptides Man5GlcNAc2-R and Man6GlcNAc2-R, but not by Man9GlcNAc2-R. rIL-2 also binds OVA, a glycoprotein which contains approximately 50% high mannose chains at a single glycosylation site, and to yeast mannan. This binding is inhibited by the same battery of saccharides which inhibit the binding to uromodulin. The conclusion that rIL-2 is a lectin is further supported by the observation that the sequence of IL-2 shares 27% homology with a 33-residue sequence of the carbohydrate-binding domain of human mannose-binding protein. The potential physiologic relevance of the carbohydrate binding activity is further elucidated by studies which show that 1) binding of soluble rIL-2 to immobilized uromodulin is enhanced at a pH of 4 to5 in the presence of divalent cations, and 2) neither uromodulin nor the high mannose glycopeptide Man5GlcNAc2Asn blocks the binding of rIL-2 to the IL-2R. Thus the carbohydrate-binding site of rIL-2 is distinct from the cell surface receptor-binding site, and might function preferentially in acidic microenvironments.  相似文献   

15.
Normal liver cells, Zajdela's hepatoma cells, and regressing hepatoma cells were metabolically labeled with either radioactive glucosamine or mannose. Glycopeptides obtained by exhaustive pronase digestion of these cells were compared after fractionation by gel filtration on Bio-Gel P-6. Chemical analysis, affinity chromatography on immobilized lectins, alkaline treatment, and susceptibility toward endo-beta-N-acetylglucosaminidase and tunicamycin revealed dramatic changes in the glycopeptide patterns of transformed cells during the recovery of normal phenotype. The most prominent feature was the presence on the surface of hepatoma cells of a large glycopeptide, which was absent from normal liver cells and disappeared almost completely during the regression of hepatoma cells. This large glycopeptide had a Mr of 70,000, contained essentially O-glycosidically linked glycan chains, and did not result from a hypersialylation. N-glycosidically linked glycopeptides, high-mannose, and complex-type oligosaccharides were present in distinct proportions according to the differentiation state. Transformation of liver cells led to a reduction of high-mannose type oligosaccharides and an increase in the degree of branching of complex-type oligosaccharides. In addition, "bisected" glycopeptides were present only on hepatoma cells. The pattern of N-linked glycopeptides of normal liver cells was recovered during the regression of hepatoma cells. The origin of glycopeptide differences between normal and transformed cells and the evidence of a relation between carbohydrate changes, in particular the appearance of a large glycopeptide, and tumorigenicity are discussed.  相似文献   

16.
Measurements of the magnetic field dependence of the longitudinal magnetic relaxation rates (NMRD profiles) of solvent protons and deuterons led to the discovery of two classes of solvent binding sites in Ca2+-Mn2+-concanavalin A (CMPL) [Koenig, S. H., Brown, R. D., III, & Brewer, C. F. (1985) Biochemistry (second of three papers in this issue)]. In this paper, we compare proton and deuteron NMRD profiles of Ca2+-Mn2+-lentil lectin (CMLcH) and Ca2+-Mn2+-pea lectin (CMPSA) with those of CMPL. All three metalloproteins are D-mannose/D-glucose-specific lectins that have a high degree of structural similarity and require the metal ions for their biological activities. We have developed a method for the preparation of fully active metal ion derivatives of lentil lectin (LcH) and pea lectin (PSA), including the diamagnetic derivatives Ca2+-Zn2+-LcH and Ca2+-Zn2+-PSA [Bhattacharyya, L., Brewer, C. F., Brown, R. D., III, & Koenig, S. H.(1984) Biochem. Biophys. Res. Commun. 124, 857-862]. The behavior of these two lectins with regard to their NMRD profiles is essentially identical, for both the paramagnetic and diamagnetic forms. Together with CMPL, all three lectins have a common paramagnetic contribution with a negative temperature dependence of the rates, while CMPL contributes an additional component with a positive temperature dependence. The common contribution derives from the class of fast exchanging water molecules observed in the proton NMRD profile of CMPL (Koenig et al., 1985); their protons are calculated to be relatively remote from the Mn2+ ions (4.4 A for CMPL and 5.5 A for LcH and PSA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with α-methylmannoside, constitute about 25–30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chrolide columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with α-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

18.
HLA class II molecules have been isolated from a [3H]mannose-labeled GM3104 B lymphoblastoid cell line with the phenotype DQw1, DR1. The DQw1 molecules were purified by affinity to 77-34 IgG specifically reactive with the DQw1 specificity. The DR1 molecules were separated into two subsets, DR1a (70 to 80%) and DR1b (20 to 30%), by sequential affinity to 21r5-IgG and 21w4-IgG Sepharose. The alpha- and beta-chains of [3H]mannose-labeled DQw1, DR1a, and DR1b molecules were separated by SDS-PAGE and were recovered by electrophoretic elution. The isolated chains were digested with pronase and the glycopeptides were fractionated by sequential lectin chromatography on immobilized concanavalin A (Con A), Lens culinaris (Lens), and Ricinus communis agglutinin type I (RCA). The N-linked glycopeptides derived from the alpha-chains of DQw1, DR1a, or DR1b showed similar profiles on Con A Sepharose: 45% unbound (ConA I), 25% weakly bound (ConA II), and 30% tightly bound (ConA III). The glycopeptides derived from the beta-chains of DQw1 or DR1 molecules were found almost exclusively (80%) in the fraction unbound to Con A Sepharose, with only 11% and 9% in ConA II and ConA III fractions, respectively. The observation that most of the binding to Con A is associated with the alpha-chain glycopeptides suggests that binding of membrane-associated class II molecules to that lectin must be mediated by the alpha-chains. Binding to Lens Sepharose was higher for beta-(50%) than for alpha-(15%) chain glycopeptides, suggesting that within the intact glycoproteins, the beta-chains are responsible for the interaction with Lens. The ConA I fractions derived from the alpha-chain glycopeptides of either DQw1 or DR1 molecules were separated on RCA-agarose as follows: 60% unbound, 17% retarded, and 20% bound and eluted with 0.1 M galactose. The ConA I fractions derived from the beta-chain glycopeptides of either subset of class II molecules also had a similar profile on RCA-agarose: 70% unbound, 16% retarded, and 10% bound and eluted specifically. After removal of sialic acid residues, all of the ConA I fractions of alpha- and beta-chains bound to RCA-agarose. A high degree of similarity was observed between the corresponding glycopeptides of the three subsets of class II molecules and between the complex N-linked structures of alpha- and beta-chains. Minor variations were observed between DR1a and DR1b glycopeptides which appear greater than those observed between DR1 and DQw1 glycopeptides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
D L Blithe  C A Buck  L Warren 《Biochemistry》1980,19(14):3386-3395
Glucosamine-labeled glycopeptides from control and virus-transformed BHK fibroblasts were characterized by size, lectin affinity, charge, and composition. As already demonstrated, on the basis of elution position on a column of Sephadex G-50, transformed cells contained a greater proportion of large glycopeptides than did control cells. Transformed cells also contained a larger proportion of glycopeptides which do not bind to Con A-Sepharose. By sequential chromatography on Sephadex G-50, Con A-Sepharose, and DEAE-Sephadex, approximately 40 individual peaks were partially or completely resolved. If sialic acid was removed from the glycopeptides prior to analysis by ion-exchange chromatography, 95% of the glycopeptides from control cells and 85% of the glycopeptides from transformed cells were no longer bound by DEAE-Sephadex. It was concluded that the DEAE-Sephadex elution properties of the glycopeptides are determined almost entirely by the sialic acid content of the molecules. A comparison of the profiles of control and transformed cell glycopeptides simultaneously eluting from columns of DEAE-Sephadex revealed that the differences between the two cells were largely quantitative; however, the possibility of the existence of qualitative differences as well cannot be excluded. In particular, there was one component present on the surface of transformed cells that was virtually absent in control cells. It was degraded by nitrous acid hydrolysis and heparinase and appeared to be heparan sulfate like material. After fractionation, each isolated glycopeptide population was analyzed for carbohydrate and, in some cases, amino acid content. The apparently larger glycopeptides, group A, the dominant population in transformed cells, were found to contain 3 to 4 mannose residues/glycopeptide when the sugars were normalized to sialic acid content. On the basis of the same criteria, group B glycopeptides contained 4-6 mannose residues/glycopeptide. The carbohydrate and amino acid compositions of the glycopeptides from transformed cells were, with a few exceptions, similar to those from control cells. Some isolated glycopeptides appeared to contain both O-glycosidic anad N-glycosidic linkages on the same oligopeptide.  相似文献   

20.
By using near-UV circular dichroism (CD) and solvent proton nuclear magnetic relaxation dispersion measurements, three different conformational states have been detected in Ca(2+)-Mn(2+)-concanavalin A upon binding a variety of asparagine-linked carbohydrates. Two of these transitions have been described previously, one for the binding of monosaccharides such as methyl alpha-D-mannopyranoside and oligosaccharides with terminal alpha-Glc or alpha-Man residues, and the second for the binding of oligomannose and complex type carbohydrates (Brewer, C. F., and Bhattacharyya, L. (1986) J. Biol. Chem. 261, 7306-7310). The third transition occurs upon binding a bisected biantennary complex type carbohydrate with terminal GlcNAc residues. Temperature-dependent nuclear magnetic relaxation dispersion and CD measurements have identified regions of the protein near the two metal ion binding sites that are associated with the conformation changes, and Tyr-12, which is part of the monosaccharide binding site, as responsible for the CD changes. The results support our previous conclusions that the rotamer conformation of the (alpha 1,6) arm of bisected complex type oligosaccharides binds to concanavalin A with dihedral angle omega = -60 degrees whereas nonbisected complex type oligosaccharides bind with omega = 180 degrees (Bhattacharyya, L., Haraldsson, M., and Brewer, C. F. (1987) J. Biol. Chem. 262, 1294-1299). The present findings also explain the effects of increasing chain length of bisected complex type carbohydrates on their interactions with the lectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号