首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional structures of a sucrose isomerase from Pseudomonas mesoacidophila MX-45, forming mainly trehalulose have been solved to resolutions in the range 1.8–2.2 Å. Native and mutant complexes give, for the first time, a thorough insight into substrate binding and recognition, and product specificities of these enzymes. This study has pinpointed essential residues for binding the substrate sucrose, and hereby given detailed information on the interactions between the enzyme active site and glucosyl- and fructosyl moieties. Moreover, the 3-D structures revealed an aromatic clamp formed by two phenylalanines, which plays an essential role in recognition of the substrate and in controlling the reaction specificity.  相似文献   

2.
Due to their significant role in food industry, sucrose isomerases are good candidates for rational protein engineering. Hence, specific modifications in order to modify substrate affinity and selectivity, product specificity but also to adapt their catalytic properties to particular industrial process conditions, is interesting. Our work on the structural studies of the sucrose isomerase, MutB, which presents the first structural data available on a trehalulose synthase and the first experimental data on complexed forms of sucrose isomerases represents a significant advance in the understanding of these enzymes. In this review we give an overview of what is known on biochemical properties and structural aspects of different sucrose isomerases in particular those reported from bacteria.  相似文献   

3.
The healthy sweetener isomaltulose is industrially produced from the conversion of sucrose by the sucrose isomerase SmuA from Protaminobacter rubrum. Crystal structures of SmuA in native and deoxynojirimycin complexed forms completed with modeling studies unravel the characteristics of the isomaltulose synthases catalytic pocket and their substrate binding mode. Comparison with the trehalulose synthase MutB highlights the role of Arg298 and Arg306 active site residues and surface charges in controlling product specificity of sucrose isomerases (isomaltulose versus trehalulose). The results provide a rationale for the specific design of optimized enzymes.  相似文献   

4.
Isomaltulose [alpha-D-glucopyranosyl-(1,6)-D-fructofuranose] and trehalulose [alpha-D-glucopyranosyl-(1,1)-D-fructofuranose] are commercially valuable sucrose-substitutes that are produced in several microorganisms by the palI gene product, a sucrose isomerase. Trehalulose also occurs in the silverleaf whitefly, Bemisia argentifoli, as the major carbohydrate in the insect's honeydew. To determine if the enzyme that synthesizes trehalulose in whiteflies was similar to the well-characterized sucrose isomerase from microbial sources, the properties of the enzymes from whiteflies and the bacterium, Erwinia rhapontici, were compared. Partial purification of both enzymes showed that the enzyme from whiteflies was a 116 kD membrane-associated polypeptide, in contrast to the enzyme from E. rhapontici, which was soluble and 66 kD. The enzyme from E. rhapontici converted sucrose to isomaltulose and trehalulose in a 5:1 ratio, whereas the enzyme from whiteflies produced only trehalulose. Unlike the E. rhapontici enzyme, the whitefly enzyme did not convert isomaltulose to trehalulose, but both enzymes catalyzed the transfer of fructose to trehalulose using sucrose as the glucosyl donor. The results indicate that trehalulose synthase from whiteflies is structurally and functionally distinct from the sucrose isomerases described in bacteria. The whitefly enzyme is the first reported case of an enzyme that converts sucrose to exclusively trehalulose.  相似文献   

5.
α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1→6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans.  相似文献   

6.
Lipopolysaccharide is an essential component of the outer membrane of Gram-negative bacteria and consists of three elements: lipid A, the core oligosaccharide and the O-antigen. The inner core region is highly conserved and contains at least one residue of 3-deoxy-d-manno-octulosonate (Kdo). The first committed step of Kdo biosynthesis is the aldol-keto isomerisation of d-ribulose 5-phosphate to d-arabinose 5-phosphate catalyzed by arabinose 5-phosphate isomerase encoded in Escherichia coli by the kdsD gene.KdsD contains an N-terminal sugar isomerase (SIS) domain commonly found in phosphosugar isomerases but its three-dimensional structure is unknown.The structure of the KdsD SIS domain has been predicted by homology modeling using the hypothetical 3etn protein as a template. Moreover by sequence alignments, comparison with other sugar isomerases structurally related to KdsD, and site-directed mutagenesis we implicated four residues in KdsD activity or substrate recognition. A possible role of these residues in the catalysis is discussed.  相似文献   

7.
Substrate recognition and specificity are essential for the reliability and fidelity of protein kinase function. GSK-3 has a unique substrate specificity that requires prior phosphorylation of its substrates. However, how the enzyme selects its phosphorylated substrates is unknown. Here, we combined in silico modeling with mutagenesis and biological studies to identify GSK-3-substrate interaction sites located within its binding cleft. Protein-protein docking of GSK-3beta and the phosphorylated cAMP responsive element binding protein (pCREB) (using the available experimentally determined structures), identified Phe67, Gln89, and Asn95 of GSK-3beta as putative binding sites interacting with the CREB phosphorylation motif. Mutations of these residues to alanine impaired GSK-3beta phosphorylation of several substrates, without abrogating its autocatalytic activity. Subsequently, expression of the GSK-3beta mutants in cells resulted in decreased phosphorylation of substrates CREB, IRS-1, and beta-catenin, and prevented their suppression of glycogen synthase activity as compared with cells expressing the wild-type GSK-3beta. Our studies provide important additional understanding of how GSK-3beta recognizes its substrates: In addition to prior phosphorylation typically required in GSK-3 substrates, substrate recognition involves interactions with GSK-3beta residues: Phe67, Gln89, and Asn95, which confer a common basis for substrate binding and selectivity, yet allow for substrate diversity.  相似文献   

8.
Amylosucrases are sucrose-utilizing α-transglucosidases that naturally catalyze the synthesis of α-glucans, linked exclusively through α1,4-linkages. Side products and in particular sucrose isomers such as turanose and trehalulose are also produced by these enzymes. Here, we report the first structural and biophysical characterization of the most thermostable amylosucrase identified so far, the amylosucrase from Deinoccocus geothermalis (DgAS). The three-dimensional structure revealed a homodimeric quaternary organization, never reported before for other amylosucrases. A sequence signature of dimerization was identified from the analysis of the dimer interface and sequence alignments. By rigidifying the DgAS structure, the quaternary organization is likely to participate in the enhanced thermal stability of the protein. Amylosucrase specificity with respect to sucrose isomer formation (turanose or trehalulose) was also investigated. We report the first structures of the amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea in complex with turanose. In the amylosucrase from N. polysaccharea (NpAS), key residues were found to force the fructosyl moiety to bind in an open state with the O3' ideally positioned to explain the preferential formation of turanose by NpAS. Such residues are either not present or not similarly placed in DgAS. As a consequence, DgAS binds the furanoid tautomers of fructose through a weak network of interactions to enable turanose formation. Such topology at subsite +1 is likely favoring other possible fructose binding modes in agreement with the higher amount of trehalulose formed by DgAS. Our findings help to understand the inter-relationships between amylosucrase structure, flexibility, function, and stability and provide new insight for amylosucrase design.  相似文献   

9.
Tryptophan at the 62nd position (Trp62) of hen egg-white lysozyme is an amino acid residue whose action is essential for its enzymatic activity. Its indole ring may possibly come into direct contact with sugar residues of the substrate, and thus contribute significantly to substrate binding. For further elucidation of its role in catalytic processes, this amino acid was converted to other aromatic residues, such as Tyr, Phe, and His, by site-directed mutagenesis. All the mutations were found to enhance the bacteriolytic activity but to decrease the hydrolytic activity toward an artificial substrate, glycol chitin. Such a change in substrate preference appears remarkable considering the smaller size of the aromatic residue on the mutant enzyme at the 62nd position.  相似文献   

10.
Human cytosolic beta-glucosidase (hCBG) is a xenobiotic-metabolizing enzyme that hydrolyses certain flavonoid glucosides, with specificity depending on the aglycone moiety, the type of sugar and the linkage between them. In this study, the substrate preference of this enzyme was investigated by mutational analysis, X-ray crystallography and homology modelling. The crystal structure of hCBG was solved by the molecular replacement method and refined at 2.7 A resolution. The main-chain fold of the enzyme belongs to the (beta/alpha)(8) barrel structure, which is common to family 1 glycoside hydrolases. The active site is located at the bottom of a pocket (about 16 A deep) formed by large surface loops, surrounding the C termini of the barrel of beta-strands. As for all the clan of GH-A enzymes, the two catalytic glutamate residues are located on strand 4 (the acid/base Glu165) and on strand 7 (the nucleophile Glu373). Although many features of hCBG were shown to be very similar to previously described enzymes from this family, crucial differences were observed in the surface loops surrounding the aglycone binding site, and these are likely to strongly influence the substrate specificity. The positioning of a substrate molecule (quercetin-4'-glucoside) by homology modelling revealed that hydrophobic interactions dominate the binding of the aglycone moiety. In particular, Val168, Trp345, Phe225, Phe179, Phe334 and Phe433 were identified as likely to be important in determining substrate specificity in hCBG, and site-directed mutagenesis supported a key role for some of these residues.  相似文献   

11.
Phe161 and Arg166 of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens belong to a newly discovered sequence motif in flavoprotein hydroxylases with a putative dual function in FAD and NADPH binding [1]. To study their role in more detail, Phe161 and Arg166 were selectively changed by site-directed mutagenesis. F161A and F161G are catalytically competent enzymes having a rather poor affinity for NADPH. The catalytic properties of R166K are similar to those of the native enzyme. R166S and R166E show impaired NADPH binding and R166E has lost the ability to bind FAD. The crystal structure of substrate complexed F161A at 2.2 A is indistinguishable from the native enzyme, except for small changes at the site of mutation. The crystal structure of substrate complexed R166S at 2.0 A revealed that Arg166 is important for providing an intimate contact between the FAD binding domain and a long excursion of the substrate binding domain. It is proposed that this interaction is essential for structural stability and for the recognition of the pyrophosphate moiety of NADPH.  相似文献   

12.
Crystallographic studies of the mechanism of xylose isomerase   总被引:5,自引:0,他引:5  
The mechanism of xylose isomerase (EC 5.3.1.5) has been studied with X-ray crystallography. Four refined crystal structures are reported at 3-A resolution: native enzyme, enzyme + glucose, enzyme + glucose + Mg2+, and enzyme + glucose + Mn2+. One of these structures (E.G.Mg) was determined in a crystal mounted in a flow cell. The other structures were equilibrium experiments carried out by soaking crystals in substrate containing solution. These structures and other studies suggest that, contrary to expectation, xylose isomerase may not use the generally expected base-catalyzed enolization mechanism. A mechanism involving a hydride shift is consistent with the structures presented here and warrants further investigation. Additional evidence in support of a hydride shift comes from comparing xylose isomerase with triosephosphate isomerase which is known to catalyze an analogous reaction via an enediol intermediate. Evidence is presented that suggests that aldose-ketose isomerases can be divided into two groups. Phospho sugar isomerases generally do not require a metal ion for activity and show exchange of substrate protons with solvent. In contrast, simple sugar isomerases all require a metal ion and show very low solvent exchange. These observations are rationalized on the basis of the need for stereospecific sugar binding.  相似文献   

13.
The HNK-1 carbohydrate epitope is found in various neural cell adhesion molecules. Two glucuronyltransferases (GlcAT-P and GlcAT-S) are involved in the biosynthesis of HNK-1 carbohydrate. Our previous study on the crystal structure of GlcAT-P revealed the reaction and substrate recognition mechanisms of this enzyme. Comparative analyses of the enzymatic activities of GlcAT-S and GlcAT-P showed that there are notable differences in the acceptor substrate specificities of these enzymes. To elucidate differences between their specificities, we now solved the crystal structure of GlcAT-S. Residues interacting with UDP molecule, which is a part of the donor substrate, are highly conserved between GlcAT-P and GlcAT-S. On the other hand, there are some differences between these proteins in the manner they recognize their respective acceptor substrates. Phe245, one of the most important GlcAT-P residues for the recognition of acceptors, is a tryptophan in GlcAT-S. In addition, Val320, which is located on the C-terminal long loop of the neighboring molecule in the dimer and critical in the recognition of the acceptor sugar molecule by the GlcAT-P dimer, is an alanine in GlcAT-S. These differences play key roles in establishing the distinct specificity for the acceptor substrate by GlcAT-S, which is further supported by site-directed mutagenesis of GlcAT-S and a computer-aided model building of GlcAT-S/substrate complexes.  相似文献   

14.
Sucrose isomerase (SI) activity is used industrially for the conversion of sucrose into isomers, particularly isomaltulose or trehalulose, which have properties advantageous over sucrose for some food uses. All of the known microbial SIs are TIM barrel proteins that convert sucrose without need for any cofactors, with varying kinetics and product specificities. The current analysis was undertaken to bridge key gaps between the information in patents and scientific publications about the microbes and enzymes useful for sucrose isomer production.This analysis shows that microbial SIs can be considered in 5 structural classes with corresponding functional distinctions that broadly align with the taxonomic differences between producing organisms. The most widely used bacterial strain for industrial production of isomaltulose, widely referred to as “Protaminobacter rubrum” CBS 574.77, is identified as Serratia plymuthica. The strain producing the most structurally divergent SI, with a high product specificity for trehalulose, widely referred to as “Pseudomonas mesoacidophila” MX-45, is identified as Rhizobium sp.Each tested SI-producer is shown to have a single SI gene and enzyme, so the properties reported previously for the isolated proteins can reasonably be associated with the products of the genes subsequently cloned from the same isolates and SI classes. Some natural isolates with potent SI activity do not catabolize the isomer under usual production conditions. The results indicate that their industrial potential may be further enhanced by selection for variants that do not catabolize the sucrose substrate.  相似文献   

15.
"Protaminobacter rubrum" sucrose isomerase (SI) catalyzes the isomerization of sucrose to isomaltulose and trehalulose. SI catalyzes the hydrolysis of the glycosidic bond with retention of the anomeric configuration via a mechanism that involves a covalent glycosyl enzyme intermediate. It possesses a (325)RLDRD(329) motif, which is highly conserved and plays an important role in fructose binding. The predicted three-dimensional active-site structure of SI was superimposed on and compared with those of other alpha-glucosidases in family 13. We identified two Arg residues that may play important roles in SI-substrate binding with weak ionic strength. Mutations at Arg(325) and Arg(328) in the fructose-binding site reduced isomaltulose production and slightly increased trehalulose production. In addition, the perturbed interactions between the mutated residues and fructose at the fructose-binding site seemed to have altered the binding affinity of the site, where glucose could now bind and be utilized as a second substrate for isomaltose production. From eight mutant enzymes designed based on structural analysis, the R(325)Q mutant enzyme exhibiting high relative activity for isomaltose production was selected. We recorded 40.0% relative activity at 15% (wt/vol) additive glucose with no temperature shift; the maximum isomaltose concentration and production yield were 57.9 g liter(-1) and 0.55 g of isomaltose/g of sucrose, respectively. Furthermore, isomaltose production increased with temperature but decreased at a temperature of >35 degrees C. Maximum isomaltose production (75.7 g liter(-1)) was recorded at 35 degrees C, and its yield for the consumed sucrose was 0.61 g g(-1) with the addition of 15% (wt/vol) glucose. The relative activity for isomaltose production increased progressively with temperature and reached 45.9% under the same conditions.  相似文献   

16.
Cheon YH  Park HS  Kim JH  Kim Y  Kim HS 《Biochemistry》2004,43(23):7413-7420
We previously proposed that the stereochemistry gate loops (SGLs) constituting the substrate binding pocket of D-hydantoinase, a (beta/alpha)(8)-barrel enzyme, might be major structural determinants of the substrate specificity [Cheon, Y. H., et al. (2002) Biochemistry 41, 9410-9417]. To construct a mutant D-hydantoinase with favorable substrate specificity for the synthesis of commercially important non-natural amino acids, the SGL loops of the enzyme were rationally manipulated on the basis of the structural analysis and sequence alignment of three hydantoinases with distinct substrate specificities. In the SGLs of D-hydantoinase from Bacillus stearothermophilus SD1, mutations of hydrophobic and bulky residues Met 63, Leu 65, Phe 152, and Phe 159, which interact with the exocyclic substituent of the substrate, induced remarkable changes in the substrate specificities. In particular, the substrate specificity of mutant F159A toward aromatic substrate hydroxyphenylhydantoin (HPH) was enhanced by approximately 200-fold compared with that of the wild-type enzyme. Saturation mutagenesis at position 159 revealed that k(cat) for aromatic substrates increased gradually as the size of the amino acid side chain decreased, and this seems to be due to reduced steric hindrance between the bulky exocyclic group of the substrate and the amino acid side chains. When site-directed random mutagenesis of residues 63 and 65 was conducted with the wild type and mutant F159A, the selected enzymes (M63F/L65V and L65F/F159A) exhibited approximately 10-fold higher k(cat) values for HPH than the wild-type counterpart, which is likely to result from reorganization of the active site for efficient turnover. These results indicate that the amino acid residues of SGLs forming the substrate binding pocket are critical for the substrate specificity of D-hydantoinase, and the results also imply that substrate specificities of cyclic amidohydrolase family enzymes can be modulated by rational design of these SGLs.  相似文献   

17.
Amylosucrase is a glucosyltransferase that synthesises an insoluble alpha-glucan from sucrose. The catalytic properties of the highly purified amylosucrase from Neisseria polysaccharea were characterised. Contrary to previously published results, it was demonstrated that in the presence of sucrose alone, several reactions are catalysed, in addition to polymer synthesis: sucrose hydrolysis, maltose and maltotriose synthesis by successive transfers of the glucosyl moiety of sucrose onto the released glucose, and finally turanose and trehalulose synthesis - these two sucrose isomers being obtained by glucosyl transfer onto fructose. The effect of initial sucrose concentration on initial activity demonstrated a non-Michaelian profile never previously described.  相似文献   

18.
Jilek A  Mollay C  Lohner K  Kreil G 《Amino acids》2012,42(5):1757-1764
In the skin of fire-bellied toads (Bombina species), an aminoacyl-l/d-isomerase activity is present which catalyses the post-translational isomerization of the l- to the d-form of the second residue of its substrate peptides. Previously, this new type of enzyme was studied in some detail and genes potentially coding for similar polypeptides were found to exist in several vertebrate species including man. Here, we present our studies to the substrate specificity of this isomerase using fluorescence-labeled variants of the natural substrate bombinin H with different amino acids at positions 1, 2 or 3. Surprisingly, this enzyme has a rather low selectivity for residues at position 2 where the change of chirality at the alpha-carbon takes place. In contrast, a hydrophobic amino acid at position 1 and a small one at position 3 of the substrate are essential. Interestingly, some peptides containing a Phe at position 3 also were substrates. Furthermore, we investigated the role of the amino-terminus for substrate recognition. In view of the rather broad specificity of the frog isomerase, we made a databank search for potential substrates of such an enzyme. Indeed, numerous peptides of amphibia and mammals were found which fulfill the requirements determined in this study. Expression of isomerases with similar characteristics in other species can therefore be expected to catalyze the formation of peptides containing d-amino acids.  相似文献   

19.
We have studied the role of Tyr-69 of porcine pancreatic phospholipase A2 in catalysis and substrate binding, using site-directed mutagenesis. A mutant was constructed containing Phe at position 69. Kinetic characterization revealed that the Phe-69 mutant has retained enzymatic activity on monomeric and micellar substrates, and that the mutation has only minor effects on kcat and Km. This shows that Tyr-69 plays no role in the true catalytic events during substrate hydrolysis. In contrast, the mutation has a profound influence on the stereospecificity of the enzyme. Whereas the wild-type phospholipase A2 is only able to catalyse the degradation of sn-3 phospholipids, the Phe-69 mutant hydrolyses both the sn-3 isomers and, at a low (1-2%) rate, the sn-1 isomers. Despite the fact that the stereospecificity of the mutant phospholipase has been altered, Phe-69 phospholipase still requires Ca2+ ions as a cofactor and also retains its specificity for the sn-2 ester bond. Our data suggest that in porcine pancreatic phospholipase A2 the hydroxyl group of Tyr-69 serves to fix and orient the phosphate group of phospholipid monomers by hydrogen bonding. Because no such interaction can occur between the Phe-69 side-chain and the phosphate moiety of the substrate monomer, the mutant enzyme loses part of its stereospecificity but not its positional specificity.  相似文献   

20.
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号