首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Connexin 43 (Cx43), the most widely expressed and abundant vertebrate gap junction protein, is phosphorylated at multiple different serine residues during its life cycle. Cx43 is phosphorylated soon after synthesis and phosphorylation changes as it traffics through the endoplasmic reticulum and Golgi to the plasma membrane, ultimately forming a gap junction structure. The electrophoretic mobility of Cx43 changes as the protein proceeds through its life cycle, with prominent bands often labeled P0, P1 and P2. Many reports have indicated changes in “phosphorylation” based on these mobility shifts and others that occur in response to growth factors or other biological effectors. Here, we indicate how phosphospecific and epitope-specific antibodies can be utilized to show when and where certain phosphorylation events occur during the Cx43 life cycle. These reagents show that phosphorylation at S364 and/or S365 is involved in forming the P1 isoform, an event that apparently regulates trafficking to or within the plasma membrane. Phosphorylation at S325, S328 and/or S330 is necessary to form a P2 isoform; and this phosphorylation event is present only in gap junctions. Treatment with protein kinase C activators led to phosphorylation at S368, S279/S282 and S262 with a shift in mobility in CHO, but not MDCK, cells. The shift was dependent on mitogen-activated protein kinase activity but not phosphorylation at S279/S282. However, phosphorylation at S262 could explain the shift. By defining these phosphorylation events, we have begun to sort out the critical signaling pathways that regulate gap junction function.  相似文献   

2.
Abstract: The gap junction protein connexin43 (Cx43) has been reported to exist as several phosphorylated forms migrating at ˜43 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as well as an unphosphorylated 41-kDa form. In brain, Cx43 is expressed predominantly in astrocytes and is also expressed in several other cell types. Whereas the phosphorylated forms of Cx43 predominate in heart, several studies have indicated that high levels of the unphosphorylated form of Cx43 are present in brain. Various experiments in this report indicate that the 41-kDa molecular form in brain is a postmortem dephosphorylation product of phosphorylated Cx43. In rats killed by cranial high-energy microwave irradiation leading to rapid inactivation of brain metabolism, Cx43 in cerebral cortex was present almost exclusively as the 43-kDa phosphorylated form. Rapid dissection of brain followed by heat treatment or inclusion of phosphatase inhibitors during tissue homogenization also largely prevented the conversion of the 43-to the 41-kDa form. The 41-kDa species was generated after alkaline phosphatase digestion of the 43-kDa material obtained by immunoprecipitation from microwave-irradiated brain. Immunolabeling patterns and relative regional levels of Cx43 as seen by immunohistochemical and western blot detection were the same whether or not metabolism to the 41-kDa species was prevented. In developing rat brain, Cx43 levels in frontal cortex and brainstem increased with age, but the degree of dephosphorylation of the 43-to the 41-kDa form was greater at earlier ages in the brainstem. It appears that brain contains a phosphatase that may be involved in modulating the phosphorylation state of Cx43 and thus may regulate intercellular communication via astrocytic gap junctions.  相似文献   

3.
The ability of the gap junction phosphoprotein connexin-43 (Cx43) to inhibit DNA synthesis in primary cardiomyocytes is regulated by serine (S) 262, a protein kinase C phosphorylation site that also affects metabolic coupling. We have now examined if the S262-regulated growth suppression is operating in transformed cells and if so whether it depends on gap junction channel forming ability. Serine 262 became phosphorylated in response to protein kinase C stimulation in HEK293 cells transiently expressing either Cx43 or the non-channel-forming carboxy-terminal tail of Cx43 (Cx43CT). Expression of either wild type Cx43 or Cx43CT inhibited DNA synthesis, as did their mutated versions simulating lack of phosphorylation by carrying an S262-to-alanine substitution. The ability to inhibit DNA synthesis was eliminated when expressing mutated versions of either Cx43 or Cx43CT simulating constitutive phosphorylation by carrying an S262-to-aspartate substitution. We conclude that S262 phosphorylation cancels growth inhibition by Cx43 independently of channel-forming ability.  相似文献   

4.
The gap junction protein connexin-43 (Cx43) exists mainly in the phosphorylated state in the normal heart, while ischemia induces dephosphorylation. Phosphatase(s) involved in cardiac Cx43 dephosphorylation have not as yet been identified. We examined the acute effects of ischemia on the dephosphorylation of the gap junction protein connexin-43 in isolated adult cardiomyocytes and isolated perfused hearts. In addition we tested the effectiveness of protein phosphatase 1 and 2A (PP1/2A) inhibitors in preventing Cx43 dephosphorylation. In both models, significant accumulation of the 41 kDa non-phosphorylated Cx43, accompanied by decreased relative levels of the 43–46 kDa phosphorylated Cx43, was observed at 30 min of ischemia. Okadaic acid decreased ischemia-induced Cx43 dephosphorylation; it also decreased the accumulation of non-phosphorylated Cx43 at the intercalated discs of myocytes in the whole heart. Calyculin A, but not fostriecin, also decreased ischemia-induced Cx43 dephosphorylation in isolated cardiomyocytes. It is concluded that isolated adult myocytes respond to ischemia in a manner similar to whole hearts and that ischemia-induced dephosphorylation of Cx43 is mediated, at least in part, by PP1-like phosphatase(s).  相似文献   

5.
Altered phosphorylation and trafficking of connexin 43 (Cx43) during acute ischemia contributes to arrhythmogenic gap junction remodeling, yet the critical sequence and accessory proteins necessary for Cx43 internalization remain unresolved. 14‐3‐3 proteins can regulate protein trafficking, and a 14‐3‐3 mode‐1 binding motif is activated upon phosphorylation of Ser373 of the Cx43 C‐terminus. We hypothesized that Cx43Ser373 phosphorylation is important to pathological gap junction remodeling. Immunofluorescence in human heart reveals the enrichment of 14‐3‐3 proteins at intercalated discs, suggesting interaction with gap junctions. Knockdown of 14‐3‐3τ in cell lines increases gap junction plaque size at cell–cell borders. Cx43S373A mutation prevents Cx43/14‐3‐3 complexing and stabilizes Cx43 at the cell surface, indicating avoidance of degradation. Using Langendorff‐perfused mouse hearts, we detect phosphorylation of newly internalized Cx43 at Ser373 and Ser368 within 30 min of no‐flow ischemia. Phosphorylation of Cx43 at Ser368 by protein kinase C and Ser255 by mitogen‐activated protein kinase has previously been implicated in Cx43 internalization. The Cx43S373A mutant is resistant to phosphorylation at both these residues and does not undergo ubiquitination, revealing Ser373 phosphorylation as an upstream gatekeeper of a posttranslational modification cascade necessary for Cx43 internalization. Cx43Ser373 phosphorylation is a potent target for therapeutic interventions to preserve gap junction coupling in the stressed myocardium.   相似文献   

6.
Connexin 43 (Cx43) is a phosphoprotein expressed in a wide variety of cells. Cx43 and adenosine-triphosphate-sensitive K+channels [K+(ATP)] are part of same signaling pathway that regulates cell survival during stress and ischemia preconditioning. Molecular mechanism for their coordinated role in ischemia/hypoxia preconditioning is not well known. Using pull down, co-immunoprecipitation assays and co-localization studies we provide evidence, for the first time that Kir6.1, a K+(ATP) channel protein component, can interact with Cx43. Further we show that the interaction was phospho-specific such that Cx43 phosphorylated at serine 262 (S262) interacted with Kir6.1 in preference to the unphosphorylated form of Cx43. Introduction of phospho-deficient mutation at serine 262 (S262A) in Cx43 completely abolished the interaction. Our data provide an interesting lead about a possible partnership between Cx43 and Kir6.1, which will help in better understanding their role in ischemia/hypoxia preconditioning.  相似文献   

7.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

8.
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell–cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P1 phosphorylated and P0 unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.  相似文献   

9.
Modulation of gap junction structures and gap junctional communication is important in maintaining tissue homeostasis and can be controlled via phosphorylation of connexin 43 (Cx43) through several different signaling pathways. Transformation of cells by v-src has been shown to down-regulate gap junction communication coincident with an increase in tyrosine phosphorylation on Cx43. Activation of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) also lead to down-regulation via phosphorylation on specific serine residues. Using phosphospecific anti-Cx43 antibodies generated by the authors' laboratory to specific tyrosines (src substrates) and serine residues (MAPK and PKC substrates) to probe LA-25 cells (which express temperature-sensitive v-src), the authors show that distinct tyrosine and serines residues are phosphorylated in response to v-src activity. They show that tyrosine phosphorylation appears to occur predominantly in gap junction plaques when src is active. In addition, src activation led to increased phosphorylation of apparent MAPK and PKC sites in Cx43. These results indicate all three signaling pathways could contribute to gap junction down-regulation during src transformation in LA-25 cells.  相似文献   

10.
11.
Casein kinase 1 regulates connexin-43 gap junction assembly   总被引:11,自引:0,他引:11  
Phosphorylation of members of the connexin family of gap junction proteins has been correlated with gap junction assembly, but the mechanisms involved remain unclear. We have examined the role of casein kinase 1 (CK1) in connexin-43 (Cx43) gap junction assembly. Cellular co-immunoprecipitation experiments and in vitro CK1 phosphorylation reactions indicate that CK1 interacted with and phosphorylated Cx43, initially on serine(s) 325, 328, or 330. (32)P(i)-Metabolically labeled cells treated with CKI-7, a specific CK1 inhibitor, showed a reduction in Cx43 phosphorylation on site(s) that can be phosphorylated by CK1 in vitro. To examine CK1 function, normal rat kidney cells were treated with CKI-7, and Cx43 content was analyzed by Triton X-100 extraction, cell-surface biotinylation, and immunofluorescence. Western blot analysis indicated a slight increase in total Cx43, whereas gap junctional (Triton-insoluble) Cx43 decreased, and non-junctional plasma membrane Cx43 increased (as detected by cell surface biotinylation). Immunofluorescence experiments in the presence of CK1 inhibitor showed increases in Cx43 plasma membrane localization but not necessarily accumulation at cell-cell interfaces. Decreased gap junctional and phosphorylated Cx43 was also detected when cells were treated with IC261, a CK1 inhibitor specific for delta or epsilon isoforms. These data suggest CK1delta could regulate Cx43 gap junction assembly by directly phosphorylating Cx43.  相似文献   

12.
Connexins are the structural units of gap junctions, structures allowing interchanging of information between the adjacent cells. Connexin43 (Cx43) is the most abundant gap junction protein. Cx43 can be degraded by lysosome- and proteasome-mediated processes upon internalisation of the entire structure. Only little is known about the role of phosphorylation during the gap junction degradation. In Cx43, a protein containing 14 amino acids susceptible to be phosphorylated, amino acids S279 and S282 are phosphorylated upon epidermal growth factor (EGF) treatment by erk1/2 MAP kinases. Here, we show that the wild-type Cx43 protein, as well as HeLa cells expressing the mutated Cx43 proteins S279A, S282A, and S279A/S282A, is mainly located at the plasma membrane. However, the protein stability is not altered in the isolated single mutants, whereas the double mutant S279A/S282A is strongly degradation impaired upon EGF treatment. This effect is not due to the decreased Cx43 internalisation, but seems to be related to a reduced ubiquitination.  相似文献   

13.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

14.
The role of gap junctions in proliferation, differentiation and apoptosis has been recently highlighted. Nevertheless, the molecular mechanisms that control these physiological events by acting on gap junction channels are still unknown. We have recently demonstrated that heteromeric gap junction plaques composed by Cx43 and Cx33 are unstable at the cell boundary and are rapidly internalized by endocytosis. In the present study, we analyze the phosphorylation status of Cx43 in homomeric (Cx43/Cx43) and heteromeric (Cx33/Cx43) complexes and their association with the tyrosine kinase c-Src. Our data show that c-Src interaction and P2 phosphorylation of Cx43, which are essential for homomeric Cx43 complex endocytosis, were altered in the heteromeric Cx33/Cx43 complex: lack of association between Cx33 and activated c-Src and disappearance of the P2 phosphorylated Cx43 isoform. The present findings demonstrate that the interaction of Cx33 with Cx43 within a same heteromeric complex may conduce to channel instability through alteration of the phosphorylation status of Cx43 independently of the control of the c-Src kinase. The data described here emphasize a new mechanism of Cx43 internalization Src kinase-independent.  相似文献   

15.
《The Journal of cell biology》1994,127(6):1895-1905
The effect of 12-O-tetradeconylphorbol-13-acetate (TPA) on gap junction assembly between Novikoff hepatoma cells was examined. Cells were dissociated with EDTA to single cells and then reaggregated to form new junctions. When TPA (25 nM) was added to the cells at the onset of the 60-min reaggregation, dye transfer was detected at only 0.6% of the cell-cell interfaces compared to 72% for the untreated control and 74% for 4-alpha TPA, an inactive isomer of TPA. Freeze-fracture electron microscopy of reaggregated control cells showed interfaces containing an average of more than 600 aggregated intramembranous gap junction particles, while TPA-treated cells had no gap junctions. However, Lucifer yellow dye transfer between nondissociated cells via gap junctions was unaffected by 60 min of TPA treatment. Therefore, TPA dramatically inhibited gap junction assembly but did not alter channel gating nor enhance disassembly of preexisting gap junction structures. Short term TPA treatment (< 30 min) increased phosphorylation of the gap junction protein molecular weight of 43,000 (Cx43), but did not change the cellular level of Cx43. Cell surface biotinylation experiments suggested that TPA did not substantially reduce the plasma membrane concentration of Cx43. Therefore, the simple presence of Cx43 in the plasma membrane is not sufficient for gap junction assembly, and protein kinase C probably exerts an effect on assembly of gap junctions at the plasma membrane level.  相似文献   

16.
Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.  相似文献   

17.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.  相似文献   

18.
Oculodentodigital dysplasia (ODDD) is a dominantly inherited human disorder associated with different symptoms like craniofacial anomalies, syndactyly and heart dysfunction. ODDD is caused by mutations in the GJA1 gene encoding the gap junction protein connexin43 (Cx43). Here, we have characterized four Cx43 mutations (I31M, G138R, G143S and H194P) after stable expression in HeLa cells. In patients, the I31M and G138R mutations showed all phenotypic characteristics of ODDD, whereas G143S did not result in facial abnormalities and H194P mutated patients exhibited no syndactylies. In transfected HeLa cells, these mutations led to lack of the P2 phosphorylation state of the Cx43 protein, complete inhibition of gap junctional coupling measured by neurobiotin transfer and increased hemichannel activity. In addition, altered trafficking and delayed degradation were found in these mutants by immunofluorescence and pulse-chase analyses. In G138R and G143S mutants, the increased hemichannel activity correlated with an increased half-time of the Cx43 protein. However, the I31M mutated protein showed no extended half-time. Thus, the increased hemichannel activity may be directly caused by an altered conformation of the mutated channel forming protein. We hypothesize that increased hemichannel activity may aggravate the phenotypic abnormalities in ODDD patients who are deficient in Cx43 gap junction channels. Radoslaw Dobrowolski and Annette Sommershof contributed equally to this work.  相似文献   

19.
Yogo K  Ogawa T  Akiyama M  Ishida N  Takeya T 《FEBS letters》2002,531(2):132-136
The gap junctional intercellular communication mediated by Cx43 plays indispensable roles in both germ line development and postnatal folliculogenesis. In this study, we focused on the effect of follicle-stimulating hormone (FSH) on the Cx43 protein in rat primary granulosa cells and found that FSH stimulation elevated the phosphorylation in addition to the protein level of Cx43. Serine residues in the carboxyl-terminal region were exclusively phosphorylated in this system and we identified Ser365, Ser368, Ser369 and Ser373 as major phosphorylation sites by FSH stimulation. A Cx43 variant containing mutations at all these serine residues was found to severely reduce dye transfer activity when assayed in HeLa cells. The present study revealed a novel regulatory mechanism of Cx43-mediated gap junctional intercellular communication through phosphorylation in the carboxyl-terminus.  相似文献   

20.
Gap junctions are plasma membrane domains containing channels that directly connect the cytosols of neighbouring cells. Gap junction channels are made of a family of transmembrane proteins called connexins, of which the best studied is Connexin43 (Cx43). MAP kinase-induced phosphorylation of Cx43 has previously been shown to cause inhibition of gap junction channel permeability and increased Cx43 endocytosis. As Cx43 assembles into gap junction plaques, Cx43 acquires detergent resistance. Here we report that the detergent resistance is lost after activation of MAP kinase. Treatment of IAR20 rat liver epithelial cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) or epidermal growth factor (EGF) caused a rapid increase in the solubility of Cx43 in Triton X-100. This process was mediated by MAP kinase and was initiated at the plasma membrane. The data suggest that loss of the detergent resistance of Cx43 is an early step in TPA- and EGF-induced endocytosis of gap junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号