首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
Amino acid sequence patterns suggested to characterize specific recurrent turn conformation in protein are tested as to their predictive power in a database containing 75 proteins of known structure. Many of these patterns are found to be associated with local structures that differ from the motifs originally used to derive them. It is therefore concluded that, while they could be useful for improving predictions made by other methods, their stand-alone predictive power is poor. The issue of deriving and validating consensus sequence patterns for use in protein structure prediction is raised.  相似文献   

2.
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.  相似文献   

3.
Chen BJ  Tsai CH  Chan CH  Kao CY 《Proteins》2006,64(1):246-252
Disulfide bridges stabilize protein structures covalently and play an important role in protein folding. Predicting disulfide connectivity precisely helps towards the solution of protein structure prediction. Previous methods for disulfide connectivity prediction either infer the bonding potential of cysteine pairs or rank alternative disulfide bonding patterns. As a result, these methods encode data according to cysteine pairs (pair-wise) or disulfide bonding patterns (pattern-wise). However, using either encoding scheme alone cannot fully utilize the local and global information of proteins, so the accuracies of previous methods are limited. In this work, we propose a novel two-level framework to predict disulfide connectivity. With this framework, both the pair-wise and pattern-wise encoding schemes are considered. Our models were validated on the datasets derived from SWISS-PROT 39 and 43, and the results demonstrate that our models can combine both local and global information. Compared to previous methods, significant improvements were obtained by our models. Our work may also provide insights to further improvements of disulfide connectivity prediction and increase its applicability in protein structure analysis and prediction.  相似文献   

4.
Loops are the most variable regions of protein structure and are, in general, the least accurately predicted. Their prediction has been approached in two ways, ab initio and database search. In recent years, it has been thought that ab initio methods are more powerful. In light of the continued rapid expansion in the number of known protein structures, we have re‐evaluated FREAD, a database search method and demonstrate that the power of database search methods may have been underestimated. We found that sequence similarity as quantified by environment specific substitution scores can be used to significantly improve prediction. In fact, FREAD performs appreciably better for an identifiable subset of loops (two thirds of shorter loops and half of the longer loops tested) than the ab initio methods of MODELLER, PLOP, and RAPPER. Within this subset, FREAD's predictive ability is length independent, in general, producing results within 2Å RMSD, compared to an average of over 10Å for loop length 20 for any of the other tested methods. We also benchmarked the prediction protocols on a set of 212 loops from the model structures in CASP 7 and 8. An extended version of FREAD is able to make predictions for 127 of these, it gives the best prediction of the methods tested in 61 of these cases. In examining FREAD's ability to predict in the model environment, we found that whole structure quality did not affect the quality of loop predictions. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
MOTIVATION: Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. RESULTS: We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. AVAILABILITY: The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide  相似文献   

6.
MOTIVATION: Disulfide bonds play an important role in protein folding. A precise prediction of disulfide connectivity can strongly reduce the conformational search space and increase the accuracy in protein structure prediction. Conventional disulfide connectivity predictions use sequence information, and prediction accuracy is limited. Here, by using an alternative scheme with global information for disulfide connectivity prediction, higher performance is obtained with respect to other approaches. RESULT: Cysteine separation profiles have been used to predict the disulfide connectivity of proteins. The separations among oxidized cysteine residues on a protein sequence have been encoded into vectors named cysteine separation profiles (CSPs). Through comparisons of their CSPs, the disulfide connectivity of a test protein is inferred from a non-redundant template set. For non-redundant proteins in SwissProt 39 (SP39) sharing less than 30% sequence identity, the prediction accuracy of a fourfold cross-validation is 49%. The prediction accuracy of disulfide connectivity for proteins in SwissProt 43 (SP43) is even higher (53%). The relationship between the similarity of CSPs and the prediction accuracy is also discussed. The method proposed in this work is relatively simple and can generate higher accuracies compared to conventional methods. It may be also combined with other algorithms for further improvements in protein structure prediction. AVAILABILITY: The program and datasets are available from the authors upon request. CONTACT: cykao@csie.ntu.edu.tw.  相似文献   

7.
MOTIVATION: A new representation for protein secondary structure prediction based on frequent amino acid patterns is described and evaluated. We discuss in detail how to identify frequent patterns in a protein sequence database using a level-wise search technique, how to define a set of features from those patterns and how to use those features in the prediction of the secondary structure of a protein sequence using support vector machines (SVMs). RESULTS: Three different sets of features based on frequent patterns are evaluated in a blind testing setup using 150 targets from the EVA contest and compared to predictions of PSI-PRED, PHD and PROFsec. Despite being trained on only 940 proteins, a simple SVM classifier based on this new representation yields results comparable to PSI-PRED and PROFsec. Finally, we show that the method contributes significant information to consensus predictions. AVAILABILITY: The method is available from the authors upon request.  相似文献   

8.
The folding process defines three‐dimensional protein structures from their amino acid chains. A protein's structure determines its activity and properties; thus knowing such conformation on an atomic level is essential for both basic and applied studies of protein function and dynamics. However, the acquisition of such structures by experimental methods is slow and expensive, and current computational methods mostly depend on previously known structures to determine new ones. Here we present a new software called GSAFold that applies the generalized simulated annealing (GSA) algorithm on ab initio protein structure prediction. The GSA is a stochastic search algorithm employed in energy minimization and used in global optimization problems, especially those that depend on long‐range interactions, such as gravity models and conformation optimization of small molecules. This new implementation applies, for the first time in ab initio protein structure prediction, an analytical inverse for the Visitation function of GSA. It also employs the broadly used NAMD Molecular Dynamics package to carry out energy calculations, allowing the user to select different force fields and parameterizations. Moreover, the software also allows the execution of several simulations simultaneously. Applications that depend on protein structures include rational drug design and structure‐based protein function prediction. Applying GSAFold in a test peptide, it was possible to predict the structure of mastoparan‐X to a root mean square deviation of 3.00 Å. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Fragment assembly is a powerful method of protein structure prediction that builds protein models from a pool of candidate fragments taken from known structures. Stochastic sampling is subsequently used to refine the models. The structures are first represented as coarse-grained models and then as all-atom models for computational efficiency. Many models have to be generated independently due to the stochastic nature of the sampling methods used to search for the global minimum in a complex energy landscape. In this paper we present , a fragment-based approach which shares information between the generated models and steers the search towards native-like regions. A distribution over fragments is estimated from a pool of low energy all-atom models. This iteratively-refined distribution is used to guide the selection of fragments during the building of models for subsequent rounds of structure prediction. The use of an estimation of distribution algorithm enabled to reach lower energy levels and to generate a higher percentage of near-native models. uses an all-atom energy function and produces models with atomic resolution. We observed an improvement in energy-driven blind selection of models on a benchmark of in comparison with the AbInitioRelax protocol.  相似文献   

10.
Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the biological system. Such methods are applicable to the important problems of protein 3-D structure prediction and association of gene–gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design.  相似文献   

11.
Protein structure prediction methods such as Rosetta search for the lowest energy conformation of the polypeptide chain. However, the experimentally observed native state is at a minimum of the free energy, rather than the energy. The neglect of the missing configurational entropy contribution to the free energy can be partially justified by the assumption that the entropies of alternative folded states, while very much less than unfolded states, are not too different from one another, and hence can be to a first approximation neglected when searching for the lowest free energy state. The shortcomings of current structure prediction methods may be due in part to the breakdown of this assumption. Particularly problematic are proteins with significant disordered regions which do not populate single low energy conformations even in the native state. We describe two approaches within the Rosetta structure modeling methodology for treating such regions. The first does not require advance knowledge of the regions likely to be disordered; instead these are identified by minimizing a simple free energy function used previously to model protein folding landscapes and transition states. In this model, residues can be either completely ordered or completely disordered; they are considered disordered if the gain in entropy outweighs the loss of favorable energetic interactions with the rest of the protein chain. The second approach requires identification in advance of the disordered regions either from sequence alone using for example the DISOPRED server or from experimental data such as NMR chemical shifts. During Rosetta structure prediction calculations the disordered regions make only unfavorable repulsive contributions to the total energy. We find that the second approach has greater practical utility and illustrate this with examples from de novo structure prediction, NMR structure calculation, and comparative modeling.  相似文献   

12.

Background  

Predicting the three-dimensional structure of a protein from its amino acid sequence is currently one of the most challenging problems in bioinformatics. The internal structure of helices and sheets is highly recurrent and help reduce the search space significantly. However, random coil segments make up nearly 40% of proteins and they do not have any apparent recurrent patterns, which complicates overall prediction accuracy of protein structure prediction methods. Luckily, previous work has indicated that coil segments are in fact not completely random in structure and flanking residues do seem to have a significant influence on the dihedral angles adopted by the individual amino acids in coil segments. In this work we attempt to predict a probability distribution of these dihedral angles based on the flanking residues. While attempts to predict dihedral angles of coil segments have been done previously, none have, to our knowledge, presented comparable results for the probability distribution of dihedral angles.  相似文献   

13.
蛋白质结构从头预测是不依赖模板仅从氨基酸序列信息得到天然结构。它的关键是正确定义能量函数、精确选用计算机搜索算法来寻找能量最低值。基于此,本文系统介绍了能量函数和构象搜索策略,并列举了几种比较成功的从头预测方法,通过比较得出结论:基于统计学知识的能量函数是近年来从头预测发展的主要方向,现有从头预测的构象搜索都用到Monte Carlo法。这表明随着蛋白质结构预测研究的深入,能量函数的构建、构象搜索方法的选择、大分子蛋白质结构的从头预测等关键性问题都取得了突破性进展。  相似文献   

14.
In fragment‐assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge‐based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state‐of‐the‐art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment‐assembly technique, Rosetta. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
MOTIVATION: The sequence patterns contained in the available motif and hidden Markov model (HMM) databases are a valuable source of information for protein sequence annotation. For structure prediction and fold recognition purposes, we computed mappings from such pattern databases to the protein domain hierarchy given by the ASTRAL compendium and applied them to the prediction of SCOP classifications. Our aim is to make highly confident predictions also for non-trivial cases if possible and abstain from a prediction otherwise, and thus to provide a method that can be used as a first step in a pipeline of prediction methods. We describe two successful examples for such pipelines. With the AutoSCOP approach, it is possible to make predictions in a large-scale manner for many domains of the available sequences in the well-known protein sequence databases. RESULTS: AutoSCOP computes unique sequence patterns and pattern combinations for SCOP classifications. For instance, we assign a SCOP superfamily to a pattern found in its members whenever the pattern does not occur in any other SCOP superfamily. Especially on the fold and superfamily level, our method achieves both high sensitivity (above 93%) and high specificity (above 98%) on the difference set between two ASTRAL versions, due to being able to abstain from unreliable predictions. Further, on a harder test set filtered at low sequence identity, the combination with profile-profile alignments improves accuracy and performs comparably even to structure alignment methods. Integrating our method with structure alignment, we are able to achieve an accuracy of 99% on SCOP fold classifications on this set. In an analysis of false assignments of domains from new folds/superfamilies/families to existing SCOP classifications, AutoSCOP correctly abstains for more than 70% of the domains belonging to new folds and superfamilies, and more than 80% of the domains belonging to new families. These findings show that our approach is a useful additional filter for SCOP classification prediction of protein domains in combination with well-known methods such as profile-profile alignment. AVAILABILITY: A web server where users can input their domain sequences is available at http://www.bio.ifi.lmu.de/autoscop.  相似文献   

16.
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.  相似文献   

17.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   

18.
The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences.  相似文献   

19.
Prediction of protein residue contacts with a PDB-derived likelihood matrix   总被引:8,自引:0,他引:8  
Proteins with similar folds often display common patterns of residue variability. A widely discussed question is how these patterns can be identified and deconvoluted to predict protein structure. In this respect, correlated mutation analysis (CMA) has shown considerable promise. CMA compares multiple members of a protein family and detects residues that remain constant or mutate in tandem. Often this behavior points to structural or functional interdependence between residues. CMA has been used to predict pairs of amino acids that are distant in the primary sequence but likely to form close contacts in the native three-dimensional structure. Until now these methods have used evolutionary or biophysical models to score the fit between residues. We wished to test whether empirical methods, derived from known protein structures, would provide useful predictive power for CMA. We analyzed 672 known protein structures, derived contact likelihood scores for all possible amino acid pairs, and used these scores to predict contacts. We then tested the method on 118 different protein families for which structures have been solved to atomic resolution. The mean performance was almost seven times better than random prediction. Used in concert with secondary structure prediction, the new CMA method could supply restraints for predicting still undetermined structures.  相似文献   

20.
在蛋白质结构预测的研究中,一个重要的问题就是正确预测二硫键的连接,二硫键的准确预测可以减少蛋白质构像的搜索空间,有利于蛋白质3D结构的预测,本文将预测二硫键的连接问题转化成对连接模式的分类问题,并成功地将支持向量机方法引入到预测工作中。通过对半胱氨酸局域序列连接模式的分类预测,可以由蛋白质的一级结构序列预测该蛋白质的二硫键的连接。结果表明蛋白质的二硫键的连接与半胱氨酸局域序列连接模式有重要联系,应用支持向量机方法对蛋白质结构的二硫键预测取得了良好的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号