首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
The alkaline unwinding assay has been used to demonstrate the formation of single-strand breaks in DNA on treatment with silicic acid. Double-stranded DNA, containing no single-strand breaks, when incubated with increasing concentrations of silicic acid, showed the formation of an increasing number of strand breaks per molecule. Experiments on reduction of silicic acid-treated DNA with NaBH4 suggested the possibility of creation of apurinic or apyrimidinic sites. The significance of silicic acid interaction with cellular DNA during asbestos exposure is discussed.  相似文献   

2.
Wen Y  Zhang PP  An J  Yu YX  Wu MH  Sheng GY  Fu JM  Zhang XY 《Mutation research》2011,716(1-2):84-91
1,3-Butadiene (BD) is an air pollutant and a known carcinogen. 1,2,3,4-Diepoxybutane (DEB), one of the major in vivo metabolites of BD, is considered the ultimate culprit of BD mutagenicity/carcinogenicity. DEB is a bifunctional alkylating agent, being capable of inducing the formation of monoalkylated DNA adducts and DNA cross-links, including DNA-DNA and DNA-protein cross-links (DPC). In the present study, we investigated DEB-caused DNA cross-links and breaks in human hepatocyte L02 cells using comet assay. With alkaline comet assay, it was observed that DNA migration increased with the increase of DEB concentration at lower concentrations (10-200μM); however, at higher concentrations (200-1000μM), DNA migration decreased with the increase of DEB concentration. This result indicated the presence of cross-links at >200μM, which was confirmed by the co-treatment experiments using the second genotoxic agents, tert-butyl hydroperoxide and methyl methanesulfonate. At 200μM, which appeared as a threshold, the DNA migration-retarding effect of cross-links was just observable by the co-treatment experiments. At <200μM, the effect of cross-links was too weak to be detected. The DEB-induced cross-links were determined to be DNA-DNA ones rather than DPC through incubating the liberated DNA with proteinase K prior to unwinding and electrophoresis. However, at the highest DEB concentration tested (1000μM), a small proportion of DPC could be formed. In addition, the experiments using neutral and weakly alkaline comet assays showed that DEB did not cause double-strand breaks, but did induce single-strand breaks (SSB) and alkali-labile sites (ALS). Since SSB and ALS are repaired more rapidly than cross-links, the results suggested that DNA-DNA cross-links, rather than DPC, were probably responsible for mutagenicity/carcinogenicity of DEB.  相似文献   

3.
(trans,trans)-Muconaldehyde, a putative metabolite of benzene, should be expected to have mutagenic properties by virtue of its twin alpha,beta-unsaturated carbonylic function. It displayed definitely mutagenic properties in S. typhimurium TA100 without metabolic activation and with a 5-fold concentration of tester organisms in the preincubation assay and induced SOS response in E. coli. It induced micronucleus formation and morphological transformation in a dose-dependent manner in Syrian hamster embryofibroblasts. No DNA single-strand breaks or interstrand cross-links could be detected using the alkaline elution technique; however, strand-break generation by subsequent gamma-irradiation was found to be increased.  相似文献   

4.
When recipient Bacillus subtilis carrying chromosomal trimethylpsoralen cross-links were transformed, the donor marker activity decreased with the extent of cross-linking. Additional donor marker activity was lost upon incubation of the reextracted DNA with nuclease S1, particularly at higher levels of cross-linking. Physical analysis of the reextracted DNA showed that the donor DNA was progressively excluded from heteroduplex formation as the frequency of cross-links in the recipient DNA increased. In the donor-recipient complexes still being formed, increasing amounts of donor DNA became susceptible to nuclease S1 digestion under these conditions. These results suggest that resident interstrand cross-links interfere both with initiation of recombination and with the completion of heteroduplex formation.  相似文献   

5.
2-Acetylaminofluorene (AAF) or trans-4-acetylaminostilbene (AAS) was orally or intraperitoneally administered to female Wistar rats. DNA from liver cells was analyzed for single-strand breaks by the alkaline elution assay. Only borderline effects were observed with doses (100 μMol/kg) used in animal carcinogenesis experiments. Even high doses of AAF (1,000 μMol/kg) were not effective. Methyl methanesulfonate (MMS) in vivo and gamma irradiation in vitro were shown to produce dose-dependent DNA single-strand breaks (positive control). Only a marginal effect was obtained with 100 μMollkg MMS. The elution rate of DNA was increased by a factor of 34 in liver cells in vitro with 400 rad of gamma irradiation. Only a fraction of this rate could be demonstrated immediately after irradiation in vivo, and no lesions were found two hours later. This strongly indicates the rapid repair of single-strand breaks. Additional experiments showed that AAS, a nonhepatocarcinogen, produced more interstrand cross-links in the rat liver DNA than did AAF.  相似文献   

6.
The effects of nitracrine (1-nitro-9-(3,3-N,N-dimethylaminopropylamino)acridine on DNA of cultured HeLa cells were studied. DNA strand breakage and interstrand cross-linking as well as DNA-protein cross-linking were measured by means of an alkaline elution technique and were compared with the cytotoxic effect of the drug. Interstrand cross-links were not detectable in the concentration range that inhibited cell growth up to 99%. DNA single-strand breaks were found when cells were treated with highly cytotoxic doses of the drug. DNA breakage was not reparable and exhibited a tendency to increase during incubation after drug removal. The only chromatin lesion induced by sublethal doses of nitracrine were DNA-protein cross-links which persisted for 24 h after drug treatment. It is concluded that DNA breaks represent degraded DNA from dying cells, whereas DNA-protein cross-links are specific cellular lesions, which may be responsible for the cell-killing effect of nitracrine.  相似文献   

7.
A series of 1,2-bis(sulfonyl)hydrazines with the capacity to function as alkylating agents have been evaluated for their toxicity towards Mer- HT29 and Mer- BE cells, and for their ability to produce DNA damage expressed as single-strand breaks and DNA interstrand cross-links. Compounds of this class with methylating potential showed a marked difference in their capacity to inhibit the growth of Mer- and Mer+ cells, being considerably more toxic to BE Mer- cells. Dose-dependent DNA single-strand breaks were induced by these agents, with the quantity of breaks produced in Mer- and Mer+ cells being essentially the same. Maintenance of these lesions did not appear to explain the differential in toxicity to BE and HT29 cells. A chloroethylating compound of this class was also more toxic to Mer- BE cells than to Mer+ HT29 cells, but the differential toxicity was considerably less than that of the methylating agents of the series. The chloroethylating agent did not produce measurable single-strand breaks of the DNA of treated cells, but caused more DNA interstrand cross-links in Mer- cells than in Mer+ cells. Thus, DNA interstrand cross-links may be at least in part responsible for the cell kill produced by this agent. The findings suggest that methylating and chloroethylating derivatives of the 1,2-bis(sulfonyl)hydrazine family have different biochemical determinants of their cytodestructive actions.  相似文献   

8.
The cis-isomer of the antitumor drug dichlorodiammineplatinum(II) [cis-Pt(II)] was tested for its abilty to introduce nicks (single-strand breaks) into supercoiled PM2 DNA. Whereas incubations up to 24 h show no indication of cis-Pt(II)-treated DNA having single-strand breaks, DNA interstrand cross-links were detected in the first 15 min of incubation. Furthermore, the formation of DNA interstrand cross-links was both inhibited and fully reversed after incubation with 2 mM thiourea.  相似文献   

9.
Specificity of the interaction of furfural with DNA   总被引:1,自引:0,他引:1  
Furfural or 2-furaldehyde is a dietary mutagen and is present in various frequently consumed food products. The alkaline unwinding assay and protection of cleavage sites from the action of various restriction enzymes was used to study the interaction of furfural with DNA. Alkaline unwinding experiments showed the formation of an increasing number of strand breaks in duplex DNA both with increasing furfural concentration and with time of reaction. Treatment of lambda phage DNA with furfural protected cleavage with restriction endonucleases DraI and SspI but not with ApaI, BssHII and SacII. These results indicate that under the conditions used furfural reacts exclusively with AT base pairs. A minimum of 3-4 consecutive AT base pairs are required for this reaction. This was determined by the use of several restriction enzymes whose hexanucleotide recognition sequences contain subsets of AT base pairs.  相似文献   

10.
Tetracyclines (TCs) in combination with Cu(II) ions exhibited significant DNA damaging potential vis a vis tetracyclines per se. Interaction of tetracyclines with DNA resulted in alkylation at N-7 and N-3 positions of adenine and guanine bases, and caused destabilization of DNA secondary structure. Significant release of acid-soluble nucleotides from tetracycline-modified DNA upon incubation with S(1) nuclease ascertained the formation of single stranded regions in the DNA. Also, the treatment of tetracycline-modified DNA with 0.1 and 0.5M NaOH resulted in 62 and 76% hydrolysis compared to untreated control. Comparative alkaline hydrolysis of DNA modified with tetracycline derivatives showed differential DNA damaging ability in the order as DOTC > DMTC > TC > OTC > CTC. Addition of Cu(II) invariably augmented the extent of tetracycline-induced DNA damage. The alkaline unwinding assay clearly demonstrated the formation of approximately six strand breaks per unit DNA at 1:10 DNA nucleotide/TC molar ratio in the presence of 0.1mM Cu(II) ions. At a similar Cu(II) concentration, a progressive transformation of covalently closed circular (CCC) (form-I) plasmid pBR322 DNA to forms-II and -III was noticed with increasing tetracycline concentrations. The results obtained with the free-radical quenchers viz. mannitol, thiourea, sodium benzoate and superoxide dismutase (SOD) suggested the involvement of reactive oxygen species in the DNA strand breakage. It is concluded that the tetracycline-Cu(II)-induced DNA damage occurs due to (i) significant binding of tetracycline and Cu(II) with DNA, (ii) methyl group transfer from tetracycline to the putative sites on nitrogenous bases, and (iii) metal ion catalyzed free-radical generation in close vicinity of DNA backbone upon tetracycline photosensitization. Albeit, the DNA alkylation and strand cleavage are repairable lesions, but any defect in the critical repair pathway may augment the damage accumulation and mutagenesis.  相似文献   

11.
DNA damage is an inescapable aspect of life in the biosphere. The presented investigations were an attempt to examine the response of a DNA damage as a biomarker of environmental quality in the mussels Mytilus galloprovincialis sampled at differently contaminated areas of Istrian coast, Northern Adriatic. The investigations were performed in order to get information about the genotoxic risk for marine organisms exposed to mixed environmental pollution, as well as the information about the presence of unknown mixture of genotoxic contaminants in the marine environment. Types of DNA damage detected are alkali-labile sites and single-strand breaks measured by Fast Micromethod, interstrand cross-links and DNA protein cross-links by alkaline filter elution and cell cycle disturbation by flow cytometry. The applicability of all three methods for marine quality control is discussed.  相似文献   

12.
The activity of Aspergillus orzae nuclease S1 on DNA has been investigated under varying pH and metal ion conditions. Nuclease S1 was found to preferentially digest denatured DNA. With native DNA as substrate the enzyme could only digest the DNA when caffeine was added to the reaction mixture. The enzyme was more active in sodium acetate buffer (pH 4.5), than in either standard saline citrate (PH 7.0) or sodium phosphate buffer (pH 6.8). Caffeine was also found to affect the thermal stability of DNA, resulting in a melting profile characterized by two transitions. The first transition (poorly defined) was below the normal melting temperature of the DNA, while the next transition was at the normal melting temperature of the DNA, while the next transition was at the normal melting temperature of the DNA. The susceptibility of caffeine-treated DNA to nuclease digestion seems to be a result of the local unwinding that caffeine causes in the regions of DNA that melt in the first transition. This selective destabilization presumably sensitizes the unwound regions to nuclease hydrolysis. The hydrolysates of the DNA digested by nuclease S1 were subjected first to ion exchange chromatography followed by paper chromatography. The results from this partial characterization of the digestion products showed that they contain mononucleotides as well as oligonucleotides of varying lengths. The base composition of the mononucleotide digests suggests that caffeine has greater preference for interacting with A-T base-pairs in DNA.  相似文献   

13.
Lead is present in the natural and occupational environment and is reported to interact with DNA, but the mechanism of this interaction is not fully understood. Using the alkaline comet assay we showed that lead acetate at 1-100 microM induced DNA damage in isolated human lymphocytes measured the change in the comet tail length. At 1 and 10 microM we observed an increase in the tail length, whereas at 100 microM a decrease was seen. The former effect could follow from the induction of DNA strand breaks and/or alkali-labile sites (ALS), the latter from the formation of DNA-DNA and/or DNA-protein cross-links. No difference was observed between tail length for the alkaline and pH 12.1 versions of the assay, which indicates that strand breaks and not ALS are responsible for the tail length increase induced by lead. The neutral version of the test revealed that lead acetate induced DNA double-strand breaks at all concentrations tested. The presence of spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN) did not influence the level of DNA damage induced by lead. Post-treatment of the lead-damaged DNA (at 100 microM treatment concentration) by endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing oxidized DNA bases, as well as 3-methyladenine-DNA glycosylase II, an enzyme recognizing alkylated bases, gave rise to a significant increase in the extent of DNA damage. Proteinase K caused an increase in comet tail length, suggesting that lead acetate might cross-link DNA with nuclear proteins. Vitamin A, E, C, calcium chloride and zinc chloride acted synergistically on DNA damage evoked by lead. The results obtained suggest that lead acetate may induce single-strand breaks (SSB) and double-strand breaks (DSB) in DNA as well as DNA-protein cross-links. The participation of free radicals in DNA-damaging potential of lead is not important and it concerns other reactive species than could be trapped by DMPO or PBN.  相似文献   

14.
Double-strand DNA breaks are the most lethal type of DNA damage induced by ionizing radiations. Previously, we reported that double-strand DNA breaks can be enzymatically produced from two DNA damages located on opposite DNA strands 18 or 30 base pairs apart in a cell-free double-strand DNA break formation assay (Vispé, S., and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392). In the assay that we developed, these two DNA damages are converted into single-strand interruptions by enzymes involved in base excision repair. We showed that these single-strand interruptions are converted into double-strand DNA breaks; however, it was not due to spontaneous denaturation of DNA. Thus, we proposed a model in which DNA polymerase delta/epsilon, by producing repair patches at single-strand interruptions, collide, resulting in double-strand DNA break formation. We tested the model and investigated whether other enzymes/factors are involved in double-strand DNA break formation. Here we report that, instead of DNA polymerase delta/epsilon, flap endonuclease-1 (FEN-1), an enzyme involved in base excision repair, is responsible for the formation of double-strand DNA break in the assay. Furthermore, by transfecting a flap endonuclease-1 expression construct into cells, thus altering their flap endonuclease-1 content, we found an increased number of double-strand DNA breaks after gamma-ray irradiation of these cells. These results suggest that flap endonuclease-1 acts as a double-strand DNA break formation factor. Because FEN-1 is an essential enzyme that plays its roles in DNA repair and DNA replication, DSBs may be produced in cells as by-products of the activity of FEN-1.  相似文献   

15.
16.
Cross-links in African swine fever virus DNA.   总被引:6,自引:2,他引:4       下载免费PDF全文
African swine fever virus DNA sediments in neutral sucrose density gradients as a single component with a sedimentation coefficient of 60S. In alkaline sucrose density gradients, this material shows two components with sedimentation coefficients of 85S and 95S, respectively. The sedimentation rate value of alkali-denatured virus DNA in neutral sucrose density gradients and the renaturation velocity of denatured DNA show that is reassociated much faster than expected from its genetic complexity. This behavior is compatible with the existence of interstrand cross-links in the molecule. We also present results which suggest that there are only a few such cross-links per molecule, that they are sensitive to S1 nuclease digestion, and that they are probably located next to the ends of the DNA.  相似文献   

17.
The effect of chromatin structure on the extent of radiation damage induced by low doses of 100 KeV X rays was investigated using a fluorescent assay for DNA unwinding. Chromatin was isolated from V-79 Chinese hamster lung fibroblast nuclei by partial digestion with micrococcal nuclease. Gel electrophoresis of the isolated DNA showed the molecular weight of the chromatin preparation to be 10.6 X 10(6) with a size range of 6.6-21.7 X 10(6) Da while a size of 10.2 +/- 0.9 X 10(6) Da was found by sedimenting the DNA in alkaline sucrose gradients. The repeat length of V-79 chromatin was found to be 194 +/- 3 bp. The typical nucleosomal repeat structure of the isolated chromatin and that of intact nuclei was identical. Irradiation with 50 and 100 Gy of 100 KeV X rays and analysis by alkaline sucrose density centrifugation indicated that V-79 chromatin sustained 0.56 +/- 0.19 and 0.69 +/- 0.09 single-strand breaks per 10 Gy per 10(8) Da of DNA, respectively. Irradiation with doses of 0.5-3.0 Gy of 100 KeV X rays and analysis by the fluorometric assay showed that the radiation sensitivity of V-79 chromatin decreases sharply on compaction with MgCl2. Histone H1 depletion, which inhibits compaction and causes chromatin to expand by increasing the linker from 26 to 48 bp, results in a considerable increase in the radiation sensitivity. It is concluded that radiation damage sustained by DNA is greatly influenced by chromatin structure.  相似文献   

18.
The ability to detect DNA damage using the alkaline comet assay depends on pH, lysis time and temperature during lysis. However, it is not known whether different lysis conditions identify different types of DNA damage or simply measure the same damage with different efficiencies. Results support the latter interpretation for radiation, but not for the alkylating agent MNNG. For X-ray-induced damage, cells showed the same amount of damage, regardless of lysis pH (12.3 compared to >13). However, increasing the duration of lysis at 5 degrees C from 1 h to more than 6 h increased the amount of DNA damage detected by almost twofold. Another twofold increase in apparent damage was observed by conducting lysis at room temperature (22 degrees C) for 6 h, but at the expense of a higher background level of DNA damage. The oxygen enhancement ratio and the rate of rejoining of single-strand breaks after irradiation were similar regardless of pH and lysis time, consistent with more efficient detection of strand breaks rather than detection of damage to the DNA bases. Conversely, after MNNG treatment, DNA damage was dependent on both lysis time and pH. With the higher-pH lysis, there was a reduction in the ratio of oxidative base damage to strand breaks as revealed using treatment with endonuclease III and formamidopyrimidine glycosylase. Therefore, our current results support the hypothesis that the increased sensitivity of longer lysis at higher pH for detecting radiation-induced DNA damage is due primarily to an increase in efficiency for detecting strand breaks, probably by allowing more time for DNA unwinding and diffusion before electrophoresis.  相似文献   

19.
DNA strand breaks can be detected with great sensitivity by exposing calf thymus DNA to alkaline solutions and monitoring the rate of strand unwinding. Fluorometric analysis of DNA unwinding (FADU) is a reliable method for detecting single-strand DNA breaks as an index of DNA damage induced by photosensitizer.m-Chloroperbenzoic acid (CPBA) was used as a photosensitizer in the photodamage of calf thymus DNA. When DNA is exposed to ionizing radiation, the radicals produced in the irradiated sample modify the base-pair regions of the double strands. The protective action of copper salt, Schiff base [ethylene diamine with ethyl acetate](L) and its Cu(II) complex (Cu(7) L Cl(14)) against DNA damage photoinduced by CPBA was studied using ethidium bromide as a fluorescent probe. Treatment of DNA with 5, 10, 50, 100, or 200 microM CPBA produced 75%, 48%, 38%, 32% and 30% double-stranded DNA remaining, respectively after 30 min of alkaline treatment at 15 degrees C. Treatment of calf thymus DNA irradiated with CPBA with a dose of 1 mM [Cu(7) L Cl(14)] produced 96% double-stranded remaining protection under the same conditions compared with irradiated DNA without addition of Cu(II) complex of Schiff base.  相似文献   

20.
S1-sensitive sites in DNA after gamma-irradiation   总被引:2,自引:0,他引:2  
DNA from gamma-irradiated T1 bacteriophages was analyzed for "single-stranded" sites by cleavage with S1 nuclease from Aspergillus oryzae as lesion probe. The ratio of "S1-sensitive sites" to the amount of radiation-induced single-strand breaks was about one. Presumably these "denatured" sites were associated with single-strand breaks. The subsequent check for the persistence of "single-stranded" sites within the DNA molecule by thermokinetics demonstrated a strong affinity of the nuclease to its substrate, the single-stranded lesion, and a perfect excision. It is assumed that the direct absorption of radiation energy in the DNA gives rise to the formation of such bulky lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号