首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell reports》2023,42(1):111985
  1. Download : Download high-res image (208KB)
  2. Download : Download full-size image
  相似文献   

2.
RNA interference (RNAi) is an intrinsic antiviral immune mechanism conserved in diverse eukaryotic organisms. However, the mechanism by which antiviral RNAi in mammals is regulated is poorly understood. In this study, we uncovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1) was a new regulator of the RNAi machinery in mammals. We found that STUB1 interacted with and ubiquitinated AGO2, and targeted it for degradation in a chaperon-dependent manner. STUB1 promoted the formation of Lys48 (K48)-linked polyubiquitin chains on AGO2, and facilitated AGO2 degradation through ubiquitin-proteasome system. In addition to AGO2, STUB1 also induced the protein degradation of AGO1, AGO3 and AGO4. Further investigation revealed that STUB1 also regulated Dicer's ubiquitination via K48-linked polyubiquitin and induced the degradation of Dicer as well as its specialized form, termed antiviral Dicer (aviDicer) that expresses in mammalian stem cells. Moreover, we found that STUB1 deficiency up-regulated Dicer and AGO2, thereby enhancing the RNAi response and efficiently inhibiting viral replication in mammalian cells. Using the newborn mouse model of Enterovirus A71 (EV-A71), we confirmed that STUB1 deficiency enhanced the virus-derived siRNAs production and antiviral RNAi, which elicited a potent antiviral effect against EV-A71 infection in vivo. In summary, our findings uncovered that the E3 ubiquitin ligase STUB1 was a general regulator of the RNAi machinery by targeting Dicer, aviDicer and AGO1–4. Moreover, STUB1 regulated the RNAi response through mediating the abundance of Dicer and AGO2 during viral infection, thereby providing novel insights into the regulation of antiviral RNAi in mammals.  相似文献   

3.
Phased, small interfering RNAs (phasiRNAs) are important for plant anther development, especially for male sterility. PhasiRNA biogenesis is dependent on genes like RNA polymerase 6 (RDR6), DICER-LIKE 4 (DCL4), or DCL5 to produce 21- or 24 nucleotide (nt) double-strand small RNAs. Here, we generated mutants of DCL4, DCL5 and RDR6 using CRISPR/Cas9 system and studied their effects on plant reproductive development and phasiRNA production in wheat. We found that RDR6 mutation caused sever consequence throughout plant development starting from seed germination and the dcl4 mutants grew weaker with thorough male sterility, while dcl5 plants developed normally but exhibited male sterility. Correspondingly, DCL4 and DCL5, respectively, specified 21- and 24-nt phasiRNA biogenesis, while RDR6 contributed to both. Also, the three key genes evolved differently in wheat, with TaDCL5-A/B becoming non-functioning and TaRDR6-A being lost after polyploidization. Furthermore, we found that PHAS genes (phasiRNA precursors) identified via phasiRNAs diverged rapidly among sub-genomes of polyploid wheat. Despite no similarity being found among phasiRNAs of grasses, their targets were enriched for similar biological functions. In light of the important roles of phasiRNA pathways in gametophyte development, genetic dissection of the function of key genes may help generate male sterile lines suitable for hybrid wheat breeding.  相似文献   

4.
RNA silencing is an important antiviral mechanism in diverse eukaryotic organisms. In Arabidopsis DICER‐LIKE 4 (DCL4) is the primary antiviral Dicer, required for the production of viral small RNAs from positive‐strand RNA viruses. Here, we showed that DCL4 and its interacting partner dsRNA‐binding protein 4 (DRB4) participate in the antiviral response to Turnip yellow mosaic virus (TYMV), and that both proteins are required for TYMV‐derived small RNA production. In addition, our results indicate that DRB4 has a negative effect on viral coat protein accumulation. Upon infection DRB4 expression was induced and DRB4 protein was recruited from the nucleus to the cytoplasm, where replication and translation of viral RNA occur. DRB4 was associated with viral RNA in vivo and directly interacted in vitro with a TYMV RNA translational enhancer, raising the possibility that DRB4 might repress viral RNA translation. In plants the role of RNA silencing in viral RNA degradation is well established, but its potential function in the regulation of viral protein levels has not yet been explored. We observed that severe infection symptoms are not necessarily correlated with enhanced viral RNA levels, but might be caused by elevated accumulation of viral proteins. Our findings suggest that the control of viral protein as well as RNA levels might be important for mounting an efficient antiviral response.  相似文献   

5.
《Cell host & microbe》2021,29(9):1393-1406.e7
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
8.
9.
10.
Phosphorylation of eIF2α is an important strategy for living organisms to adapt to metabolic and physiological changes that are often associated with external stimuli. GCN2 is one of the well‐studied eIF2α kinases in yeast and mammals, which is responsible for the survival of the organism under amino acid starvation. Despite the downstream reactions being quite divergent, AtGCN2 exhibits a high primary sequence similarity to its yeast and animal counterparts. In this study, we provide experimental evidence to show that AtGCN2 shares similar biochemical properties to the yeast and animal homologues. Our in vitro assays demonstrate the binding of the C‐terminus of AtGCN2 to uncharged tRNA molecules and the enzymatic activities of AtGCN2 on both eIF2α homologues in A. thaliana, thus providing essential information for further understanding the functions of plant general control non‐repressible (GCN) homologues.  相似文献   

11.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
《Cell reports》2023,42(7):112806
  1. Download : Download high-res image (269KB)
  2. Download : Download full-size image
  相似文献   

14.
15.
In the present study, we evaluated the role of the defense-related gene OCP3 in callose deposition as a response to two necrotrophic fungal pathogens, Botrytis cinerea and Plectosphaerella cucumerina. ocp3 plants exhibited accelerated and intensified callose deposition in response to fungal infection associated with enhanced disease resistance to the two pathogens. A series of double mutant analyses showed potentiation of callose deposition and the heightened disease resistance phenotype in ocp3 plants required the plant hormone abscisic acid (ABA) and the PMR4 gene encoding a callose synthase. This finding was congruent with an observation that ocp3 plants exhibited increased ABA accumulation, and ABA was rapidly synthesized following fungal infection in wild-type plants. Furthermore, we determined that potentiation of callose deposition in ocp3 plants, including enhanced disease resistance, also required jasmonic acid (JA) recognition though a COI1 receptor, however JA was not required for basal callose deposition following fungal infection. In addition, potentiation of callose deposition in ocp3 plants appeared to follow a different mechanism than that proposed for callose β-amino-butyric acid (BABA)-induced resistance and priming, because ocp3 plants responded to BABA-induced priming for callose deposition and induced resistance of a magnitude similar to that observed in wild-type plants. Our results point to a model in which OCP3 represents a specific control point for callose deposition regulated by JA yet ultimately requiring ABA. These results provide new insights into the mechanism of callose deposition regulation in response to pathogen attack; however the complexities of the processes remain poorly understood.  相似文献   

16.
Members of the transforming growth factor-β (TGF-β) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-β superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2–Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2–Smad interaction.  相似文献   

17.
In Arabidopsis, the GH3-like gene family consists of 19 members, several of which have been shown to adenylate the plant hormones jasmonic acid, indole acetic acid and salicylic acid (SA). In some cases, this adenylation has been shown to catalyze hormone conjugation to amino acids. Here we report molecular characterization of the GH3-LIKE DEFENSE GENE 1 (GDG1), a member of the GH3-like gene family, and show that GDG1 is an important component of SA-mediated defense against the bacterial pathogen Pseudomonas syringae. Expression of GDG1 is induced earlier and to a higher level in response to avirulent pathogens compared to virulent pathogens. gdg1 null mutants are compromised in several pathogen defense responses, including activation of defense genes and resistance against virulent and avirulent bacterial pathogens. Accumulation of free and glucoside-conjugated SA (SAG) in response to pathogen infection is compromised in gdg1 mutants. All defense-related phenotypes of gdg1 can be rescued by external application of SA, suggesting that gdg1 mutants are defective in the SA-mediated defense pathway(s) and that GDG1 functions upstream of SA. Our results suggest that GDG1 contributes to both basal and resistance gene-mediated inducible defenses against P. syringae (and possibly other pathogens) by playing a critical role in regulating the levels of pathogen-inducible SA. GDG1 is allelic to the PBS3 (avrPphB susceptible) gene.  相似文献   

18.
Hemidesmosomes (HDs) are cellular junctions that anchor epithelial cells to the extracellular matrix (ECM) and are associated morphologically with the cytoskeleton. Hemidesmosomal molecular components include two proteins involved in linking intermediate filaments, HD1/plectin and BP230, and two transmembrane proteins, BP180 and the alpha6beta4 integrin, a laminin receptor. In cells lacking BP230 and BP180, HD1/plectin still associates with alpha6beta4 integrin, forming HD-like structures, called type II HDs. In the present study, we used an intestinal epithelial cell line that expresses HD1/plectin and the alpha6beta4 integrin to investigate the regulation of assembly of these proteins in type II HDs. These compounds were found to be clustered at sites of cell-ECM contact and their polarized localization was influenced by either cell confluency or extracellular matrix deposition. Conventional and immunoelectron microscopy showed that HD1/plectin and the beta4 integrin subunit are colocalized in an adhesion structure. Using cytoskeleton-disrupting drugs and confocal microscopy, we demonstrated that type II HDs are made up of numerous individual plaques whose assembly into a cluster requires actin filaments, but not microtubules.  相似文献   

19.
20.
Cyclooxygenase 2 (COX‐2) is an important inflammatory factor. Previous studies have indicated that COX‐2 is induced with lipopolysaccharide (LPS) treatment. Here, we found that an inhibitor of histone deacetylase (HDAC), trichostatin A (TSA), cannot repress LPS‐induced COX‐2 but it increased the COX‐2 level in RAW264.7 cells. We found no significant difference in NF‐κB activation and ERK1/2 phosphorylation, but LPS‐induced C/EBPδ expression was completely abolished after TSA treatment of LPS‐treated cells. Interesting, reporter assay of C/EBPδ promoter revealed that Sp1‐binding site is important. Although there was no alteration in c‐Jun levels, but the phosphorylation of c‐Jun at its C‐terminus was increased dramatically. A DNA‐associated protein assay (DAPA) and chromatin immunoprecipitation assay (ChIP) indicated that c‐Jun was recruited via Sp1 to the promoter of C/EBPδ after LPS treatment; this recruitment of c‐Jun was repressed by TSA. C/EBPδ inhibition by TSA resulted in increased binding of C/EBPα and C/EBPβ to the COX‐2 promoter. Therefore, TSA has a positive effect on LPS‐induced COX‐2 since it decreases the C/EBPδ level by reducing c‐Jun recruitment by Sp1 to the C/EBPδ promoter, resulting in increased the recruitment of C/EBPα and C/EBPβ to the COX‐2 promoter. J. Cell. Biochem. 110: 1430–1438, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号