首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
循环肿瘤DNA(Circulating Tumor DNA,ctDNA)含有肿瘤的遗传信息,与肿瘤组织具有高度的一致性,可代替肿瘤组织用于肿瘤的早期诊断,预后监测和药物疗效监测,是一种具有良好临床应用前景的液体活检标记物。但血液中的ctDNA片段化程度高,含量稀少,且与野生型DNA混合存在(约1%甚至更低),并会随着患者肿瘤分期等情况动态变化,造成了ctDNA检测困难,需要高灵敏度高特异性的突变检测方法,才能够从大量的野生型DNA中检测出微量突变型ctDNA。目前,灵敏度和特异性能够满足ctDNA检测需求的方法主要有扩增阻滞突变系统PCR(Amplification Refractory Mutation System PCR,ARMS-PCR)、钳制PCR(Clamping-PCR)、数字化PCR(Digital-PCR)、西格诺公司的质谱分辨技术(Sequenom UltraseekTM)和高通量测序技术。本文对这些方法的原理、特点、最新进展和应用前景进行了综述,为研究人员选择合适的ctDNA检测方法提供理论依据。  相似文献   

2.
循环肿瘤DNA(ctDNA)来源于肿瘤,能很好地反映肿瘤的基因信息,并且会随着肿瘤的进展发生相应的改变。近年来,ctDNA独特的能力备受人们关注并被广泛研究,本文在总结ctDNA的来源、性质和样品处理的基础上,对ctDNA的检测技术及在癌症诊疗中的应用进行综述,阐述了ctDNA标准物质在二代测序中的作用及重要性,并指出ctDNA样品的收集、存储、定量检测以及数据分析等各个流程中建立统一标准及规范的迫切性。  相似文献   

3.
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.  相似文献   

4.
中国癌症发病率与世界水平相持平,死亡率要高于世界水平。虽然更多先进的技术已经运用到癌症治疗领域,但是癌症的死亡率依然居高不下。癌症之所以难克服,是因为肿瘤细胞具有异质性。“液体活检”技术的出现,使无创性治疗方法开始应用到肿瘤治疗领域,循环肿瘤DNA(circulating tumor DNA,ctDNA)则是“液体活检”中的一种重要素材。血液中游离的DNA被称为cfDNA(Cell free DNA),含有突变的cfDNA就被称作ctDNA。ctDNA所含有的突变一般是单个碱基替换所造成的,只有癌细胞才会有这种情况的发生,这使得ctDNA具有极高的特异性,可作为高灵敏的生物标记物。由于ctDNA存在于血液中,其无创性价值重大。  相似文献   

5.
Recent circulating tumor DNA (ctDNA) research has demonstrated its potential as a non-invasive biomarker for cancer. However, the deployment of ctDNA assays in routine clinical practice remains challenging owing to variability in analytical approaches and the assessment of clinical significance. A well-developed, analytically valid ctDNA assay is a prerequisite for integrating ctDNA into cancer management, and an appropriate analytical technology is crucial for the development of a ctDNA assay. Other determinants including pre-analytical procedures, test validation, internal quality control (IQC), and continual proficiency testing (PT) are also important for the accuracy of ctDNA assays. In the present review, we will focus on the most widely used ctDNA detection technologies and the key quality management measures used to assure the accuracy of ctDNA assays. The aim of this review is to provide useful information for technology selection during ctDNA assay development and assure a reliable test result in clinical practice.  相似文献   

6.

Introduction

In most cases of cervical cancers, HPV DNA is integrated into the genome of carcinoma cells. This mutational insertion constitutes a highly specific molecular marker of tumor DNA for every patient. Circulating tumor DNA (ctDNA) is an emerging marker of tumor dynamics which detection requires specific molecular motif. To determine whether the sequence of the cell-viral junction could be used in clinical practice as a specific marker of ctDNA, we analyzed a series of cervical cancer patient serums.

Methods and Findings

Serum specimens of 16 patients diagnosed with HPV16/18-associated cervical cancer, and for which the viral integration locus had been previously localized, were analyzed. Sequential serum specimens, taken at different times during the course of the disease, were also available for two of these cases. ctDNA was found in 11 out of 13 patients with tumor size greater than 20 mm at diagnosis, and analysis of sequential serum specimens showed that ctDNA concentration in patients serum was related to tumor dynamics.

Conclusions

We report that HPV mutational insertion constitutes a highly specific molecular marker of ctDNA in HPV-associated tumor patients. Using this original approach, ctDNA was detected in most cervical cancer patients over stage I and ctDNA concentration was found to reflect tumor burden. In addition to its potential prognostic and predictive value, HPV mutation insertion is likely to constitute a new molecular surrogate of minimal residual disease and of subclinical relapse in HPV-associated tumor. This is of major importance in the perspective of specific anti-HPV therapy.  相似文献   

7.
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.  相似文献   

8.
The analysis of circulating tumor DNA (ctDNA) and circulating tumor cells, often known as liquid biopsy, is a rapidly developing field of medical research. Although it has taken decades since the discovery of cell-free DNA for it to be recognized as a suitable biomarker, the clinical benefit of ctDNA with regard to monitoring therapy response, the identification of resistance mechanisms, and novel emerging actionable targets, in addition to the detection of minimal residual disease, has recently been proven in numerous studies.Owing to the great variability of ctDNA in the circulation, together with the high degree of fragmentation, ctDNA is a challenging analyte. However, in recent years technological advances have contributed to a variety of routine applications of ctDNA analysis becoming a reality, given that a number of additional regulatory hurdles can be overcome.  相似文献   

9.
BackgroundRadiology is the current standard for monitoring treatment responses in lung cancer. Limited sensitivity, exposure to ionizing radiations and related sequelae constitute some of its major limitation. Non-invasive and highly sensitive methods for early detection of treatment failures and resistance-associated disease progression would have additional clinical utility.MethodsWe analyzed serially collected plasma and paired tumor samples from lung cancer patients (61 with stage IV, 48 with stages I-III disease) and 61 healthy samples by means of next-generation sequencing, radiological imaging and droplet digital polymerase chain reaction (ddPCR) mutation and methylation assays.ResultsA 62% variant concordance between tumor-reported and circulating-free DNA (cfDNA) sequencing was observed between baseline liquid and tissue biopsies in stage IV patients. Interestingly, ctDNA sequencing allowed for the identification of resistance-mediating p.T790M mutations in baseline plasma samples for which no such mutation was observed in the corresponding tissue. Serial circulating tumor DNA (ctDNA) mutation analysis by means of ddPCR revealed a general decrease in ctDNA loads between baseline and first reassessment. Additionally, serial ctDNA analyses only recapitulated computed tomography (CT) -monitored tumor dynamics of some, but not all lesions within the same patient. To complement ctDNA variant analysis we devised a ctDNA methylation assay (methcfDNA) based on methylation-sensitive restriction enzymes. cfDNA methylation showed and area under the curve (AUC) of > 0.90 in early and late stage cases. A decrease in methcfDNA between baseline and first reassessment was reflected by a decrease in CT-derive tumor surface area, irrespective of tumor mutational status.ConclusionTaken together, our data support the use of cfDNA sequencing for unbiased characterization of the molecular tumor architecture, highlights the impact of tumor architectural heterogeneity on ctDNA-based tumor surveillance and the added value of complementary approaches such as cfDNA methylation for early detection and monitoring  相似文献   

10.
With the emergence of novel targeted therapeutic options in early-stage and advanced-stage malignancies, researchers have shifted their focus on developing personalized treatment plans through molecular profiling. Circulating tumor DNA (ctDNA) is a cell-free DNA (ctDNA) fragment, originating from tumor cells, and circulating in the bloodstream as well as biological fluids. Over the past decade, many techniques were developed for liquid biopsies through next-generation sequencing. This alternative non-invasive biopsy offers several advantages in various types of tumors over traditional tissue biopsy. The process of liquid biopsy is considered minimally invasive and therefore easily repeatable when needed, providing a more dynamic analysis of the tumor cells. Moreover, it has an advantage in patients with tumors that are not candidates for tissue sampling. Besides, it offers a deeper understanding of tumor burden as well as treatment response, thereby enhancing the detection of minimal residual disease and therapeutic guidance for personalized medicine. Despite its many advantages, ctDNA and liquid biopsy do have some limitations.This paper discusses the basis of ctDNA and the current data available on the subject, as well as its clinical utility. We also reflect on the limitations of using ctDNA in addition to its future perspectives in clinical oncology and precision medicine.  相似文献   

11.
Context: Circulating tumor DNA (ctDNA) is a promising biomarker in cancer. Materials and methods: We generated xenograft models of cancer and detected ctDNA in plasma by qRCR targeting human AluJ sequences. Results: Our assay reached single cell sensitivity in vitro and a correlation between ctDNA amount and tumor size was observed in vivo. Treatment with a mitogen activated protein kinase kinase (MEK)-inhibitor (BAY 869766) reduced ctDNA levels. Using this assay, we also confirmed that high levels of cell-free DNA are found in cancer patients compared to healthy individuals. Discussion and conclusion: We show that ctDNA may be useful biomarker for monitoring tumor growth and treatment response.  相似文献   

12.
Detecting cell-free DNA(cfDNA) or circulating tumor DNA(ctDNA) in plasma or serum could serve as a "liquid biopsy", which would be useful for numerous diagnostic applications. cfDNA methylation detection is one of the most promising approaches for cancer risk assessment. Here, we reviewed the literature related to the use of serum or plasma circulating cell-free DNA for cancer diagnosis in the early stage and their power as future biomarkers.  相似文献   

13.
《Trends in genetics : TIG》2023,39(4):285-307
Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.  相似文献   

14.
《Endocrine practice》2018,24(5):453-459
Objective: Circulating tumor DNA (ctDNA), a subset of cell-free DNA (cfDNA), is a potential biomarker for thyroid cancer. We determined the performance of a ctDNA panel for detecting thyroid malignancy in patients with thyroid nodules.Methods: Sixty-six patients with thyroid nodules without a prior history of cancer enrolled in a prospective, 1-year study in which blood was drawn for ctDNA analysis prior to undergoing fine-needle aspiration biopsy (FNAB) of thyroid nodules. The ctDNA panel consisted of 96-mutations in 9 cancer driver genes. The primary outcome measures were the sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of our ctDNA panel for the diagnosis of thyroid malignancy as determined by pathologic and/or molecular tissue examination.Results: Results from 10 subjects could not be determined due to inadequate volume or technical issues. The final classifications of the thyroid nodules were 13 malignant and 43 benign lesions. A KRAS G12V mutation was detected in the plasma of 1 patient with stage IVA papillary carcinoma whose tissue contained the same mutation. Two of the 43 patients with benign lesions also had ctDNA detected, giving a sensitivity of 7.7%, specificity of 95.35%, PPV of 33.33%, and NPV of 77.35%. There were no significant differences between benign or malignant lesions in cfDNA levels.Conclusion: Neither cfDNA measurements nor our panel of ctDNA mutations are sensitive or specific enough to provide valuable information over FNAB. An expanded panel and the inclusion of proteomics may improve sensitivity and specificity for thyroid cancer detection.Abbreviations: cfDNA = cell-free DNA; ctDNA = circulating tumor DNA; FNAB = fine-needle aspiration biopsy; NIFTP = noninvasive follicular thyroid neoplasm with papillary-like nuclear features  相似文献   

15.
The measurement of circulating nucleic acids has transformed the management of chronic viral infections such as HIV. The development of analogous markers for individuals with cancer could similarly enhance the management of their disease. DNA containing somatic mutations is highly tumor specific and thus, in theory, can provide optimum markers. However, the number of circulating mutant gene fragments is small compared to the number of normal circulating DNA fragments, making it difficult to detect and quantify them with the sensitivity required for meaningful clinical use. In this study, we applied a highly sensitive approach to quantify circulating tumor DNA (ctDNA) in 162 plasma samples from 18 subjects undergoing multimodality therapy for colorectal cancer. We found that ctDNA measurements could be used to reliably monitor tumor dynamics in subjects with cancer who were undergoing surgery or chemotherapy. We suggest that this personalized genetic approach could be generally applied to individuals with other types of cancer.  相似文献   

16.
王晨  李艳明  方向东 《遗传》2017,39(3):220-231
液态活检是一类新兴的病理检测手段,其研究内容包括肿瘤循环细胞、肿瘤循环DNA、外泌体等物质,其中的信息为肿瘤患者的个性化医疗提供有力的依据。它凭借无创、便捷等优势在临床应用中展现出广大前景。近年来,随着液态活检研究内容的扩大及其捕获与检测技术的发展,液态活检在临床中的应用日益广泛。本文旨在探讨近年来液态活检的主要研究对象、检测技术以及在临床应用中的发展前景与所面临的挑战,以期为肿瘤患者获得更佳的治疗,推动肿瘤精准医学的发展。  相似文献   

17.
High fragmentation characterizes tumour-derived circulating DNA   总被引:1,自引:0,他引:1  

Background

Circulating DNA (ctDNA) is acknowledged as a potential diagnostic tool for various cancers including colorectal cancer, especially when considering the detection of mutations. Certainly due to lack of normalization of the experimental conditions, previous reports present many discrepancies and contradictory data on the analysis of the concentration of total ctDNA and on the proportion of tumour-derived ctDNA fragments.

Methodology

In order to rigorously analyse ctDNA, we thoroughly investigated ctDNA size distribution. We used a highly specific Q-PCR assay and athymic nude mice xenografted with SW620 or HT29 human colon cancer cells, and we correlated our results by examining plasma from metastatic CRC patients.

Conclusion/Significance

Fragmentation and concentration of tumour-derived ctDNA is positively correlated with tumour weight. CtDNA quantification by Q-PCR depends on the amplified target length and is optimal for 60–100 bp fragments. Q-PCR analysis of plasma samples from xenografted mice and cancer patients showed that tumour-derived ctDNA exhibits a specific amount profile based on ctDNA size and significant higher ctDNA fragmentation. Metastatic colorectal patients (n = 12) showed nearly 5-fold higher mean ctDNA fragmentation than healthy individuals (n = 16).  相似文献   

18.
Detection of circulating tumor DNAs (ctDNAs) in cancer patients is an important component of cancer precision medicine ctDNAs. Compared to the traditional physical and biochemical methods, blood-based ctDNA detection offers a non-invasive and easily accessible way for cancer diagnosis, prognostic determination, and guidance for treatment. While studies on this topic are currently underway, clinical translation of ctDNA detection in various types of cancers has been attracting much attention, due to the great potential of ctDNA as blood-based biomarkers for early diagnosis and treatment of cancers. ctDNAs are detected and tracked primarily based on tumor-related genetic and epigenetic alterations. In this article, we reviewed the available studies on ctDNA detection and described the representative methods. We also discussed the current understanding of ctDNAs in cancer patients and their availability as potential biomarkers for clinical purposes. Considering the progress made and challenges involved in accurate detection of specific cell-free nucleic acids, ctDNAs hold promise to serve as biomarkers for cancer patients, and further validation is needed prior to their broad clinical use.  相似文献   

19.
《Translational oncology》2020,13(8):100787
We attempted to detect circulating tumor DNA (ctDNA), taking advantage of molecular barcode next-generation sequencing (MB-NGS), which can be more easily customized to detect a variety of mutations with a high sensitivity than PCR-based methods. Sequencing with a gene panel consisting of the 13 most frequently mutated genes in breast tumors from stage I or II patients revealed 95 somatic mutations in the 12 genes in 62% (62/100) of tumors. Then, plasma DNA from each patient (n = 62) before surgery was analyzed via MB-NGS customized to each somatic mutation, resulting in the detection of ctDNA in 16.1% (10/62) of patients. ctDNA was significantly associated with biologically aggressive phenotypes, including large tumor size (P = .004), positive lymph node (P = .009), high histological grade (P < .001), negative ER (P = .018), negative PR (P = .017), and positive HER2 (P = .046). Furthermore, distant disease-free survival was significantly worse in patients with ctDNA (n = 10) than those without ctDNA (n = 52) (P < .001). Our results demonstrate that MB-NGS personalized to each mutation can detect ctDNA with a high sensitivity in early breast cancer patients at diagnosis, and it seems to have a potential to serve as a clinically useful tumor marker for predicting their prognosis.  相似文献   

20.
Malignancies involving the central nervous system present unique challenges for diagnosis and monitoring due to the difficulties and risks of direct biopsies and the low specificity and/or sensitivity of other techniques for assessment. In recent years, liquid biopsy of the cerebrospinal fluid (CSF) has emerged as a convenient alternative that combines minimal invasiveness with the ability to detect disease-defining or therapeutically actionable genetic alterations from circulating tumor DNA (ctDNA). Since CSF can be obtained by lumbar puncture, or an established ventricular access device at multiple time points, ctDNA analysis enables initial molecular characterization and longitudinal monitoring throughout a patient's disease course, promoting optimization of treatment regimens.This review outlines some of the key aspects of ctDNA from CSF as a highly suitable approach for clinical assessment, the benefits and drawbacks, testing methods, as well as potential future advancements in this field. We anticipate wider adoption of this practice as technologies and pipelines improve and envisage significant improvements for cancer care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号