首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用不同浓度的PEG6000及NaCl对5个小麦品种的成熟胚组织培养物进行处理,研究在渗透胁迫条件下基因型和激素对成熟胚愈伤组织的诱导及分化的影响。结果表明,小麦整株水平与细胞水平的抗性存在一定相关,不同基因型对干旱与盐胁迫的敏感程度不同,成熟胚愈伤组织的诱导率和植株再生率表现出明显的差异。初步得到了晋麦47、长武134、红芒麦的耐旱愈伤组织以及晋麦47、长武134的耐盐愈伤组织,并获得了晋麦47和长武134具有一定抗性的再生芽。  相似文献   

2.
PEG预处理对青稞种子萌发和幼苗生理特性的影响   总被引:4,自引:0,他引:4  
选择国内外28份青稞品种材料幼苗第一片展开叶,分别测定其相对含水量和失水率,并选择其中对水分胁迫敏感与不敏感的材料各1份,研究不同浓度(5%~30%)聚乙二醇(PEG)预处理对青稞种子萌发、幼苗生长和生理特性的影响,探讨短期水分胁迫对青稞生长发育的调节作用。结果显示:(1)28个青稞材料中‘旱地紫青稞’幼苗叶片的相对含水量最高(60.16%)、‘大麻青稞’最低(38.98%),而离体失水率‘旱地紫青稞’最低(8.80%)、‘大麻青稞’最高(20.20%)。说明‘大麻青稞’对水分胁迫最敏感,而‘旱地紫青稞’最不敏感。(2)随着胁迫程度的增加,青稞种子的萌发率和生根率,幼苗的根长、苗高和鲜重均呈先增加后降低的趋势,‘旱地紫青稞’和‘大麻青稞’种子分别在15%和10%PEG处理下发芽和生根最佳且均与对照差异显著(P<0.05),两品种的幼苗根长、苗高和鲜重均在10%PEG处理下表现最佳,但‘大麻青稞’与对照差异不显著。(3)‘旱地紫青稞’幼苗叶片可溶性蛋白和叶绿素含量随PEG处理浓度增加而逐渐增加,而丙二醛含量和相对电导率则逐渐降低,并在30%PEG处理下效果差异极显著(P<0.01);‘大麻青稞’叶片可溶性蛋白和叶绿素含量随PEG处理浓度增加呈先增加后降低的趋势,丙二醛含量和相对电导率呈先降低后增加的趋势,并在20%PEG处理下最佳。研究表明,短时间低浓度PEG处理对青稞种子萌发、幼苗生长及可溶性蛋白、叶绿素、丙二醛含量和相对电导率等生理指标的改善均有一定的促进作用;高浓度PEG处理却具有抑制作用,且高浓度PEG胁迫条件下,耐旱性强比耐旱性弱品种的自我调控能力更强。  相似文献   

3.
Abstract

Organellar genomes are small, circular entities that provide unique advantages as compared to the nuclear genome. The present study was aimed at evaluating the efficiency of utilizing mitochondrial single nucleotide polymorphisms (SNPs) approach in separating barley cultivars. Sequences generated via next-generation sequencing were further utilized to confirm the incidence of heteroplasmy in barley mitochondrial genome. The analysis involved seven cultivated barley (Hordeum vulgare subsp. vulgare) (VG) and one wild (H. vulgare subsp. spontaneum) (SP) genotypes. A total of 73 million paired-end reads per mitochondrial genomes across the eight barley genotypes were generated using Illumina HiSeq 2000 platform. Sequences of each genotype were separately aligned to the published barley mitochondrial reference genome, thus SNPs were detected. The overall results indicated the efficiency of using mitochondrial SNPs as a molecular marker in distinguishing among barley genotypes. Unique SNPs were determined in six out of the eight genotypes, where Giza131 and Giza129 had no specific mitochondrial SNPs, while Giza130 showed the largest number of unique mitochondrial SNPs. The phylogenetic tree indicated the close relationship between Giza129 and Giza130. Interestingly, SP was not clearly discriminated among genotypes.  相似文献   

4.
Grass pea (Lathyrus sativus L.) is a legume crop known from its tolerance to various abiotic stresses, especially drought. In this study, we investigated: (1) the response of grass pea seedlings to osmotic stress generated in vitro by polyethylene glycol (PEG); (2) potential drought acclimatization mechanisms of two polish grass pea cultivars. Grass pea seeds of two cultivars were sown on media containing different PEG concentrations (0, 5.5, 11.0 mM) and cultivated for 14 days in controlled conditions. Plants’ dry matter increased under osmotic stress (regardless of PEG concentration). In turn, the highest dose of PEG caused a reduction in seedling growth in both cultivars. Furthermore, PEG caused the peroxidase activity increase in whole seedlings and catalase (CAT) activity in roots. However, differences between cultivars were noted in: CAT activity in shoots; while phenols and anthocyanin content as well as electrolyte leakage in shoots and roots. In turn, in both tested genotypes, accumulation of proline increased in shoots under osmotic stress. Obtained results indicate that the examined plants, although belonging to the same species, differ in acclimatization processes leading to elevated tolerance to osmotic stress.  相似文献   

5.
不同花生品种(系)萌发期抗旱性鉴定评价   总被引:4,自引:1,他引:3  
以发芽势、发芽率、发芽指数、胚根长、胚轴长、幼芽长、幼苗鲜/干重的相对值为指标,通过PEG6000模拟干旱处理,对15份花生品种(系)进行萌发期抗旱性鉴定。结果显示,胁迫处理初期,低浓度处理对种子萌发有促进作用,随着胁迫处理时间的延长及胁迫处理浓度的升高,种子萌发受抑制程度增强。除相对幼芽长以外,其他相对指标都和品种综合抗旱能力呈极显著正相关。通过隶属函数法结合抗旱分级标准筛选出泰花4号、徐花13号、泰0125、泰0005等4份抗旱品种,泰花5号、濮花28、中花16等3份中抗材料,表明该方法可以作为一种快速、简便的鉴定花生萌发期抗旱性的方法。  相似文献   

6.
In the recent years using non-traditional sources, i.e. saline water in irrigation becomes essential. Overcoming the toxic effects of salinity stress and improving salt tolerance is consider one of the challenges for enhancing germination, seedling characters and biochemical analysis. Therefore, a laboratory experiment was conducted to study the response of seven Egyptian flax cultivars i.e. (Giza 9, Giza 10, Giza 11, Giza 12, Sakha 2, Sakha 5 and Sakha 6) germinated under five salinity stress i.e. (control, 3, 6, 9 and 12?dS?m?1) at Research Institute of Nyiregyhaza using Factorial Experimental in Randomized Complete Block Design (RCBD) with four replications. The following results were recorded: Tested Egyptian flax cultivars significantly varied for germination characters, seedling properties and chemical analysis. Giza 11 exceeded recorded the maximum values of germination and seedling characters, potassium and proline content compared with the other studied cultivars. Increasing salinity stress up to 12?dS?m?1 significantly affected germination characters, seedlings parameters and chemical analysis. In general, Giza 11 cultivar substantiated best at high level of salinity stress compared with other studied cultivars. Furthermore, produced the lowest values of Na+ content.  相似文献   

7.
Co-existence of salt and drought tolerance in Triticeae   总被引:1,自引:0,他引:1  
Farooq S  Azam F 《Hereditas》2001,135(2-3):205-210
Cell membrane stability (CMS) technique was used to screen for drought tolerance, salt tolerant accessions of three Aegilops species, Ae. tauschii, Ae. cylindrica, Ae. geniculata and two hexaploid wheat (Tricitum aestivum L.) cultivars comprising salt tolerant LU-26 and drought tolerant Chakwal-86. The objectives were to see how valid it is for a salt tolerant plant to be drought tolerant as well and to identify the character(s) that may contribute to drought tolerance. Three moisture levels equal to 100, 50 and 25% saturation capacity of the soil were used for plant cultivation. Injury percentage (IP) based on in-vitro desiccation induced by polyethylene glycol (PEG) in leaf tissue was measured through the conductivity of the electrolyte leakage. Injury percentage decreased in all the test material with decrease in soil moisture contents. Ae. cylindrica exhibited minimum injury at 100% soil moisture level followed by Ae. tauschii and Ae. geniculata while drought tolerant wheat cultivars exhibited the maximum. The wheat cultivar Chakwal-86 has been developed for dry areas, with low soil moisture levels, and high water potential enhances the injury percentage. Aegilops cylindrica is a salt tolerant species and can thus tolerate water deficit conditions created due to low osmotic potential. Potassium appeared to play an important role in drought tolerance which was evident from high K+ contents and low K+ leakage from Aegilops cylindrica and drought tolerant wheat cultivar Chakwal-86. It was inferred from the study that salt tolerant species might prove drought tolerant in the areas where water deficit prevails due to the ability to create low intracellular osmotic potentials.  相似文献   

8.
Screening for drought tolerance in Sorghum using cell culture   总被引:4,自引:0,他引:4  
Summary Callus growth from 10 cultivars ofSorghum bicolor (L.) Moench was measured with increasing levels of polyethylene glycol (PEG) as an osmoticum in the medium to determine whether differences among these cultivars at the cellular level in response to osmotic stress existed. These cellular ratings were compared to field ratings from the 10 tolerant-to-susceptible cultivars when grown under drought conditions to determine whether cellular ratings corresponded to differences in drought tolerance at the plant level. Callus cultures were grown on Murashige and Skoog inorganic salt formulation plus vitamins, 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin and sucrose, supplemented with 0 to 25% (wt/vol) PEG corresponding to −0.2 to −1.62 MPa osmotic potential. Results suggest that PEG-induced osmotic stress on callus cultures can be used to screen sorghum cultivars for potential early field (preflowering) drought tolerance. This implies that at least a component of the early field drought tolerance in sorghum may have a cellular basis. This study was supported by U.S. Agency for International Development Grant AID/DSAN/XII/G-0149, and USDA Competitive Grants Program.  相似文献   

9.
Drought is a major stress which can seriously limit yield in many crops including barley. Wild barley introgression lines (ILs) like the S42IL library may enhance drought stress tolerance of barley cultivars through the introduction of exotic alleles. The S42IL library was already characterized with 636 Illumina SNPs. New approaches like genotyping by sequencing (GBS) are available for barley to enhance the characterization of ILs. We generated an improved genetic map of the S42IL library, consisting of 4,201 SNPs by adding GBS data. The new map with a total length of 989.2 cM confirmed the extent of wild barley introgressions. Adding GBS data increased the resolution of the S42IL map tenfold from 0.4 to 4.2 markers/cM. This may assist to select possible candidate genes that improve drought tolerance. In four greenhouse experiments, juvenile drought stress response of 52 barley S42ILs was tested to identify quantitative trait loci (QTL). Thirteen S42ILs showed effects for plant biomass and leaf senescence. Subsequently, two verification experiments were conducted with these S42ILs. Nine out of eleven QTL were verified, and 22 additional QTL were detected. For 21 QTL, the Hsp allele increased trait performance, indicating the value of wild barley introgressions. For example, S42IL-107 and S42IL-123 produced more biomass under drought. Two different water-saving strategies were observed. S42IL-143 and S42IL-129 both revealed increased relative water content under drought. While S42IL-143 reduced biomass under drought, S42IL-129 maintained a high biomass production. We recommend using S42IL-107, S42IL-123 and S42IL-129 in barley breeding programs to enhance drought tolerance.  相似文献   

10.
Almansouri  M.  Kinet  J.-M.  Lutts  S. 《Plant and Soil》2001,231(2):243-254
In order to determine the relative importance of ionic toxicity versus the osmotic component of salt stress on germination in durum wheat (Triticum durum Desf.), seeds of three cultivars differing in their salt and drought resistance (Omrabi-5, drought-resistant; Belikh, salt-resistant and Cando, salt-sensitive) were incubated in various iso-osmotic solutions of NaCl, mannitol and polyethylene-glycol (PEG) (osmotic potential of –0.15 (control solution) –0.58, –1.05 or –1.57 MPa). Moderate stress intensities only delayed germination, whereas the highest concentration of NaCl and PEG reduced final germination percentages. PEG was the most detrimental solute, while mannitol had no effect on final germination percentages. All osmotica reduced endosperm starch and soluble sugars content as well as -amylase activities recorded after 48 h of treatment while -amylase activities were, in contrast, slightly stimulated in all cultivars. Deleterious effects of NaCl and PEG were higher on isolated embryos germinated onto an in vitro Linsmaier and Skoog (LS) medium comparatively to whole seeds. All PEG-treated embryos, however, recovered after the stress relief while NaCl-treated embryos exhibited a lower rate of recovery and some extent of abnormal germination after rinsing. It was concluded that stress inhibition of germination could not be attributed to an inhibition of mobilisation of reserves and that the main effect of PEG occurred via an inhibition of water uptake while detrimental effects of NaCl may be linked to long-term effects of accumulated toxic ions. The behaviour of the three cultivars during germination did not fully reflect their mean level of putative stress resistance in field conditions and germination is, therefore, not recommended as a reliable selection criterion for breeding purposes.  相似文献   

11.

Aims

Water use efficiency (WUE) of crop plants is an important plant trait for maintaining high yield in water limited areas. By influencing osmoregulation of plants, potassium (K) plays a critical role in stress avoidance and adaptation. However, whole plant physiological mechanisms modulated by K supply in respect of plant drought tolerance and water use efficiency are not well understood. In the present study, growth, development and transpiration dynamics of two barley cultivars were evaluated with and without PEG-induced osmotic stress using an automated balance system and image based leaf area determination.

Methods

Experiments were conducted to study the effects of varied K supply under different osmotic stress treatments on a wide range of morphological, biochemical and physiological characteristics of barley plants such as leaf area development, daily whole plant transpiration rate (DTR), stomatal conductance (gs), assimilation rate (AN), biomass and leaf water use efficiency (WUE) as well as foliar abscisic acid (ABA) concentrations. Two barley cultivars (cv. Sahin-91 and cv. Milford) were treated with two K supply levels (0.04 and 0.8 mM K) and osmotic stress induced by polyethylene glycol 6000 (PEG) for a period of 9 days (in total 48 days experiment) in the hydroponic plant culture (non-PEG and + 20% PEG ).

Results

Without PEG, low-K supply depressed dry matter (DM) by almost 60% averaged across both cultivars. Under osmotic stress (+PEG), total leaf area was reduced by almost 70% in low-K compared to adequate-K plants. Low K concentration under PEG stress was correlated with higher ABA concentration and was correlated with lower leaf- and whole plant transpiration rate. Biomass-WUE under low K supply decreased significantly in both barley cultivars, to a greater extent in cv. Milford under osmotic stress. However, leaf-WUE was not affected by K supply in the absence of osmotic stress.

Conclusions

It was suggested that reduced biomass-WUE in low-K treated barley plants was not related to inefficient stomatal control under K deficiency, but instead due to reduced assimilation rate. It was further hypothesized that under low K supply, a number of energy consuming activities reduce biomass-WUE, which are not distinguished by measuring leaf-WUE. This study showed that low K supply under osmotic stress increases foliar ABA concentration thereby decreasing plant transpiration.
  相似文献   

12.
栽培大豆和野生大豆耐盐性及离子效应的比较   总被引:36,自引:0,他引:36  
以国际上常用的耐盐大豆(Glycine max L.)品种Lee68为对照,在发芽期和苗期两个阶段,利用发芽指数、指害指数和耐盐系数等指标对一年生具盐腺野生大豆(Glycine soja L.)和部分栽培大豆(Glycine max L.)及某些野生大豆品系或品种的耐盐性进行了比较,讨论了耐盐指标的可行性。从离子效应方面比较了Na^ 和Cl^-对大豆发芽率的影响,并对具盐腺野生大豆的耐盐机理进行了初步分析。结果表明,大豆品种的耐盐性在发芽期和苗期无一致相关性。轻度等渗胁迫下,Na^ 对种子发芽率的抑制作用大于Cl^-,而重度等渗胁迫下则相反。通过减少由根系吸收的Na^ 、Cl^-向叶片的运输,维持叶片中较高含量的K^ ,减轻盐离子毒害,可能是具盐腺野生大事耐盐的主要生理机制之一。  相似文献   

13.
渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究   总被引:30,自引:0,他引:30  
用聚乙二醇(PEG)-6000作为渗透剂模拟干旱胁迫,探讨在4种不同浓度的渗透胁迫下水稻种子的萌发特性,并确立间接评价水稻苗期抗旱性的萌发期鉴定指标。结果表明,高浓度渗透液对种子萌发的抑制作用明显大于低浓度,萌发率的干旱胁迫反应指数随渗透液浓度的降低和萌发进程而增加。在不同浓度的渗透胁迫处理中,20%浓度下萌发6d后的萌发率表现较大的变异幅度和变异系数以及较均衡的品种频率分布,较好地反映了水稻种质对渗透胁迫的不同反应,认为20%/6d条件较适合作为萌发率鉴定的渗透液模拟干旱胁迫;经反复干旱后的幼苗存活率与萌发胁迫指数和20%胁迫浓度下萌发8d后芽鞘长的干旱胁迫反应指数(DRI)表现极显著或显著正相关,认为萌发胁迫指数和芽鞘长的DRI可作为评价水稻苗期抗旱性的间接鉴定指标。  相似文献   

14.
Hydroponically grown wheat seedlings of two prominent Bulgarian cultivars (Katya and Prelom) were subjected to 48 h osmotic stress with PEG 8000 and were then rehydrated. The degree of stress was evaluated by monitoring relative water content, lipid peroxidation level, and accumulation of free proline and hydrogen peroxide in the leaves. Anatomy and ultrastructure of leaf tissue were observed under light microscopy. After imposition of stress, drought tolerant cultivar Katya displayed higher free proline content and significantly lower malondialdehyde and peroxide concentration in leaves than in the leaves of susceptible cultivar Prelom. After 24 h of rehydration Katya showed better ability to restore leaf water status and an apparent tendency towards recovery, whereas Prelom sustained higher levels of hydrogen peroxide, lipid peroxidation products and free proline and markedly low relative water content. Here, we have uncovered some of the characteristics displayed by cultivar Katya that enable it to survive and recover from severe osmotic stress. Interestingly, there was congruence between our results and the high level of cultivar Katya drought tolerance observed in the field.  相似文献   

15.
Drought is considered one of the leading abiotic constraints to agricultural crop production globally. Present study was conducted to assess the effects of different drought treatments (viz. Control, 10% PEG, and 20% PEG) on seed germination, germination indices, seedling traits, and drought tolerance indices of sesame. Our results showed that maximum reduction in the studied parameters was observed at higher PEG concentration (i.e., 20% PEG). As compared to control, the drought treatments viz. 10% and 20% PEG decreased the values for germination indices, such as germination percentage, coefficient of variation of germination time, germination index, and seedling vigor index. Similarly, for seedling traits, the values were decreased for root length, shoot length, root shoot ratio, root fresh weight, shoot fresh weight, root dry weight and shoot dry weight under 10% and 20% PEG treatments significantly in comparison with control. Furthermore, relative to control, the values for drought tolerance indices, such as germination drought tolerance index, root length drought tolerance index, shoot length drought tolerance index, total seedling length drought tolerance index, root fresh weight drought tolerance index, shoot fresh weight drought tolerance index, total fresh weight drought tolerance index, root dry weight drought tolerance index, shoot dry weight drought tolerance index and total dry weight drought tolerance index were also reduced under 10% and 20% PEG treatments, respectively. Our results confirms that drought impact on seed germination and seedling traits could be quantified by using different indices which can further help to design drought adaptation and mitigation strategies. Based on these results it can be concluded that germination indices, seedling traits, and drought tolerance indices have great potential to simulate drought stress impacts on different crop traits thus they should be used in all kinds of stress related studies.  相似文献   

16.
This investigation was conducted in 2005/2006 and 2006/2007 to test 235 barley lines plus two varieties Giza 127 and Giza 128 for resistance and susceptibility to Fusarium graminearum. All screened barley lines showed varied significant degrees of infestation to root rot pathogen. A screening system is described for identifying barley lines which are effective in controlling resistant or susceptible lines. By detecting small but consistent differences in root rot severity, the bioassay proved effective in large-scale screening for partial resistance: already 335 barley lines and two varieties have been screened. We found five groups (7.12%), 22 barley lines and both varieties are resistant (R) (8.31%); 28 barley lines are moderately resistant (MR) (19.29%); 65 barley lines are moderately susceptible (MS) (27.89%); 94 barley lines are susceptible (S) and (37.39%) 126 barley lines are highly susceptible (HS). The high degree of precision makes this an invaluable tool in the understanding of pathogen aggressiveness, host specialisation and parasitic fitness. Disease scale was strongly negative and had moderate correlation with germination (?0.309?? and ?0.649??) under normal and disease treatment. The correlation between yield and normal and disease treatment during two seasons was strong and negative (?0.834?? and ?0.847??, respectively were detected).  相似文献   

17.
Few plants are habitat-indifferent halophytes (i.e., grow well in both saline and non-saline soils). These plants offer a good opportunity to study drought and salinity tolerances during germination for seeds developed and matured in soils differ in salinity. Here, we assessed drought tolerance during germination, as simulated with PEG, and response of germination to light and temperature for Suaeda vermiculata, a habitat-indifferent shrub. Seeds matured in saline and non-saline soils were germinated in six PEG concentrations (0 to ? 1.0 MPa) and put in three incubators adjusted at different temperatures in both light and dark regimes. Drought tolerance was greater for seeds of the non-saline than those of saline soils, especially at higher temperatures. Seeds of the saline soils germinated in the lowest osmotic potentials (? 0.8 and ??1.0 MPa) only at lower temperatures, but seeds of the non-saline soils germinated to higher levels at all temperatures. Tolerances to drought and high temperatures were greater in light for seeds of saline soils, but in darkness for seeds of non-saline soils. Germination rate index did not differ significantly between seeds of the two soil types in higher osmotic potentials, but was significantly greater in seeds of non-saline at lower osmotic potentials. Most seeds that failed to germinate in the PEG concentrations recovered their germination when transferred to distilled water. Germination recovery levels and speeds increased with the decrease in osmotic potentials. Seeds of the saline soil postpone their germination until arrival of suitable temperatures and effective rainfalls that ensure seedling survival in salty habitats of the arid unpredictable deserts.  相似文献   

18.
19.
To understand alfalfa (Medicago sativa L.) reactions to osmotic stress, solutions with −0.5, −1 and −1.5 MPa osmotic potentials using PEG (Poly ethyleneglycol) and distilled water as control were prepared. In a germination test, eleven alfalfa cultivar seeds were allowed to germinate in these solutions. M. sativa cv. Yazdi and M. sativa cv. Gharayonje, selected as tolerant and sensitive cultivars, respectively, and were used for further studies. In all PEG solutions, root and shoot dry weights decreased in both cultivars. Under different levels of osmotic stress, root to shoot ratio increased significantly in Yazdi, whereas this parameter showed no significant differences in Gharayonje. Yazdi cultivar also showed higher activities of SOD (Superoxide dismutase), APX (Ascorbate peroxidase), CAT (Catalase), POD (Peroxidase), and higher reducing sugar contents of leaves in comparison with Gharayonje. These higher antioxidant activities help the tolerant cultivar to decrease oxidative damages of osmotic stress to membrane lipids as compared with its sensitive counterpart. As a result, electrolyte leakage and the amounts of MDA (Malondialdehyde), were higher in Gharayonje. This study highlights the importance of enzymatic and non-enzymatic antioxidant systems in scavenging reactive oxygen species which is caused by osmotic stress. It is seems that antioxidant systems are more active in tolerant cultivars than those of sensitive ones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号