首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethylene stimulation of latex production in Hevea brasiliensis   总被引:1,自引:0,他引:1  
Rubber tree (Hevea brasiliensis) is an important industrial crop for natural rubber production. Ethylene, as a stimulant of latex production in H. brasiliensis, has been widely used in commercial latex production. However, the mechanism of ethylene action are not completely elucidated, especially in molecular aspect. Here, we focus on the molecular biological progression of ethylene stimulation of latex production. Our data and all previous information showed ethylene had little direct effect on accelerating rubber biosynthesis. The prolonged latex flow and acceleration of sucrose metabolism by ethylene may be the main reasons for the stimulation of latex yield by ethylene.Key words: Hevea brasiliensis, ethylene, rubber production, gene, sucrose  相似文献   

2.

Key message

Leaf relative water content, leaf area, leaf fresh weight, and SPAD chlorophyll meter readings along with Co - rbcL and Co - rbcS expression can be used for evaluating Camellia oleifera responses to combined drought and heat stress and subsequent recovery after rainfall events.

Abstract

Leaf characteristics, soluble protein and total soluble sugar contents as well as Rubisco-related gene expression in three cultivars of C. oleifera were measured during a combined drought and heat stress period and after subsequent rainfall events. Leaf relative water content (RWC) was significantly correlated with leaf area (LA), leaf fresh weight (FW), SPAD chlorophyll meter readings, and the levels of Co-rbcL and Co-rbcS expression. Results suggest that leaf RWC, LA, leaf FW, SPAD readings together with Co-rbcL and Co-rbcS expression can be used for evaluating responses of C. oleifera cultivars to combined drought and heat stress and subsequent recovery after rainfall events. Rubisco activase might be used for evaluating plant recovery after rainfall. This study identified cultivars differing in tolerance to the combined stress and recovery. Information derived from this study should be valuable for improving survivability and productivity of C. oleifera cultivars.
  相似文献   

3.

Key message

Sunlight is a key environmental factor in growth, flowering and shaping of the Dracaena draco tree. Unidirectional light deforms the tree and may cause it to tilt.

Abstract

Dracaena draco, a tree-like monocot, lives in cycles of vegetative growth and flowering. The cycles, as well as the tree growth form, are under genetic control. What controls their length has been unknown before. We propose that it is sunlight. Our trees of the same origin, growing for 20 years in the garden in varying sunlight conditions, started to flower when 9–12, 16 and 18–19 years old, for those growing in full sun, part shade and shade, respectively. In full sun, they grow shorter trunks than those in shade, catching overhead sun. Their branches also had shorter or longer growth and flowering cycles depending on sunlight availability. D. draco tree exhibited strong phototropic response and its crown was organized by the direction of growing tips. In full and in overhead sun, it had a regular form but asymmetrical in unidirectional, oblique sunlight. An asymmetrical crown and the absence of reaction wood may cause the D. draco tree tilting and progressive loss of balance.
  相似文献   

4.
5.
6.

Key message

Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype.

Abstract

Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.
  相似文献   

7.

Key message

The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.

Abstract

A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
  相似文献   

8.

Key message

Transgenic Populus alba over-expressing a TIP aquaporin ( aqua1) showed a higher growth rate under Zn excess, suggesting that aqua1 could be involved in water homeostasis, rather than in Zn homeostasis.

Abstract

Populus is the internationally accepted model for physiological and developmental studies of tree traits under stress. In plants, aquaporins facilitate and regulate the diffusion of water, however, few poplar aquaporins have been characterized to date. In this study, we reported for the first time an in vivo characterization of Populus alba clone Villafranca transgenic plants over-expressing a TIP aquaporin (aqua1) of P. x euramericana clone I-214. An AQUA1:GFP chimeric construct, over-expressed in P. alba Villafranca clones, shows a cytoplasmic localization in roots, and it localizes in guard cells in leaves. When over-expressed in transgenic plants, aqua1 confers a higher growth rate compared to wild-type (wt) plants, without affecting chlorophyll accumulation, relative water content (RWC), and fluorescence performances, but increasing the intrinsic Transpiration Efficiency. In response to Zn (1 mM), transgenic lines did not show a significant increase in Zn accumulation as compared to wt plants, even though the over-expression of this gene confers higher tolerance in root tissues. These results suggest that, in poplar plants, this gene could be principally involved in regulation of water homeostasis and biomass production, rather than in Zn homeostasis.
  相似文献   

9.

Main conclusion

We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10.Flavonoid biosynthesis is one of the best-studied secondary metabolite pathways in plants. In the model system Arabidopsis thaliana it leads to the synthesis of three phenolic compound classes: flavonol glycosides, anthocyanins and proanthocyanidins (PAs). PAs appear brown in their oxidised polymeric forms, and most A. thaliana mutants impaired in flavonoid accumulation were identified through screens for lack of this seed coat pigmentation. These mutants are referred to as transparent testa (tt) or tannin-deficient seed (tds). More than 20 mutants of these types have been published, probably representing most of the genes relevant for PA accumulation in A. thaliana. However, data about the genes involved in PA deposition or oxidation are still rather scarce. Also, for some of the known mutants it is unclear if they represent additional loci or if they are allelic to known genes. For the present study, we have performed a systematic phenotypic characterisation of almost all available tt and tds mutants and built a collection of mutants in the genetic background of the accession Columbia to minimise effects arising from ecotype variation. We have identified a novel tt6 allele from a forward genetic screen and demonstrated that tds3 is allelic to tt12 and tds5 to aha10.
  相似文献   

10.

Key message

A comparative genetics approach allowed to precisely determine the map position of the restorer gene Rfp3 in rye and revealed that Rfp3 and the restorer gene Rfm1 in barley reside at different positions in a syntenic 4RL/6HS segment.

Abstract

Cytoplasmic male sterility (CMS) is a reliable and striking genetic mechanism for hybrid seed production. Breeding of CMS-based hybrids in cereals requires the use of effective restorer genes as an indispensable pre-requisite. We report on the fine mapping of a restorer gene for the Pampa cytoplasm in winter rye that has been tapped from the Iranian primitive rye population Altevogt 14160. For this purpose, we have mapped 41 gene-derived markers to a 38.8 cM segment in the distal part of the long arm of chromosome 4R, which carries the restorer gene. Male fertility restoration was comprehensively analyzed in progenies of crosses between a male-sterile tester genotype and 21 recombinant as well as six non-recombinant BC4S2 lines. This approach allowed us to validate the position of this restorer gene, which we have designated Rfp3, on chromosome 4RL. Rfp3 was mapped within a 2.5 cM interval and cosegregated with the EST-derived marker c28385. The gene-derived conserved ortholog set (COS) markers enabled us to investigate the orthology of restorer genes originating from different genetic resources of rye as well as barley. The observed localization of Rfp3 and Rfm1 in a syntenic 4RL/6HS segment asks for further efforts towards cloning of both restorer genes as an option to study the mechanisms of male sterility and fertility restoration in cereals.
  相似文献   

11.

Key message

Using map-based cloning, we delimited the Ms - cd1 gene responsible for the male sterile phenotype in B. oleracea to an approximately 39-kb fragment. Expression analysis suggests that a new predicted gene, a homolog of the Arabidopsis SIED1 gene, is a potential candidate gene.

Abstract

A dominant genic male sterile (DGMS) mutant 79-399-3 in Brassica oleracea (B. oleracea) is controlled by a single gene named Ms-cd1, which was genetically mapped on chromosome C09. The derived DGMS lines of 79-399-3 have been successfully applied in hybrid cabbage breeding and commercial hybrid seed production of several B. oleracea cultivars in China. However, the Ms-cd1 gene responsible for the DGMS has not been identified, and the molecular basis of the DGMS is unclear, which then limits its widespread application in hybrid cabbage seed production. In the present study, a large BC9 population with 12,269 individuals was developed for map-based cloning of the Ms-cd1 gene, and Ms-cd1 was mapped to a 39.4-kb DNA fragment between two InDel markers, InDel14 and InDel24. Four genes were identified in this region, including two annotated genes based on the available B. oleracea annotation database and two new predicted open reading frames (ORFs). Finally, a newly predicted ORF designated Bol357N3 was identified as the candidate of the Ms-cd1 gene. These results will be useful to reveal the molecular mechanism of the DGMS and develop more practical DGMS lines with stable male sterility for hybrid seed production in cabbage.
  相似文献   

12.
13.
14.

Main conclusion

A mixture of resins based on aliphatic esters and carboxylic acids occurs in distantly related genera Peperomia and Roridula , serving different functions as adhesion in seed dispersal and prey capture. According to mechanical characteristics, adhesive secretions on both leaves of the carnivorous flypaper Roridula gorgonias and epizoochorous fruits of Peperomia polystachya were expected to be similar. The chemical analysis of these adhesives turned out to be challenging because of the limited available mass for analysis. Size exclusion chromatography and Fourier transform infrared spectroscopy were suitable methods for the identification of a mixture of compounds, most appropriately containing natural resins based on aliphatic esters and carboxylic acids. The IR spectra of the Peperomia and Roridula adhesive resemble each other; they correspond to that of a synthetic ethylene–vinyl acetate copolymer, but slightly differ from that of natural tree resins. Thus, the pressure sensitive adhesive properties of the plant adhesives are chemically proved. Such adhesives seem to appear independently in distantly related plant lineages, habitats, life forms, as well as plant organs, and serve different functions such as prey capture in Roridula and fruit dispersal in Peperomia. However, more detailed chemical analyses still remain challenging because of the small available volume of plant adhesive.
  相似文献   

15.
16.

Key message

Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion.

Abstract

Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.
  相似文献   

17.
18.
A novel series of the DBP(n) fluorescent symmetric dimeric bisbenzimidazoles in which the bisbenzimidazole fragments were attached to an oligomeric linker with the 1,4-piperazine residue in its center were prepared. The DBP(n) molecules were distinguished by the number of methylene groups n (where n = 1, 2, 3, 4) in the linker. The DBP(n) synthesis was based on a condensation of the monomeric bisbenzimidazole (MB) with 1,4-piperazinedialkylcarbonic acids. The ability of the DBP(n) dimeric bisbenzimidazoles to form complexes with the double-stranded DNA was demonstrated by a complex of physicochemical methods, including spectroscopy in the visual UV-area, circular dichroism (CD), and fluorescence. The DBP(1–4) molecules were localized in the DNA minor groove by the CD method with the use of cholesteric liquid-crystalline dispersions (CLCD) of the double-stranded DNA. The DBP(n) dimeric bisbenzimidazoles were easily soluble in water, penetrated through cellular and nuclear membranes, and stained DNA in living cells distinct from the previously synthesized DB(n) series.  相似文献   

19.

Key message

Genetic structure among M. azedarach populations was detected and two subpopulations were present among them. A significant ‘isolation by distance’ was found in M. azedarach population in North-Western Plains of India.

Abstract

Melia azedarach is an important forest tree with pharmaceutical, insecticidal, pesticidal, and commercial significance. It is a good reforestation tree because of its fast growth and drought hardy nature. Genetic variation in a species allows itself to adapt, evolve and respond to environmental stress. It provides the basis for survival of a species and critically influences its evolutionary potential. Assessment of genetic diversity is necessary for improvement and conservation of a species. For this, microsatellite markers are of particular interest given the attributes like co-dominance, reproducibility, hyper variability and abundance throughout the genome. In the present study, we analyzed the genetic diversity and population structure of M. azedarach, an ecologically imperative species growing in the North-Western Plains of India. We developed 43 microsatellite markers, of which 20 were subsequently employed for analysis of diversity and population structure among 33 populations encompassing 318 genotypes representing North-Western Plains of India. A moderate level of diversity (Na = 5.1, Ho = 0.506, He = 0.712, I = 1.386) was assessed. The highest value of ΔK estimated using STRUCTURE indicated 2 subpopulations (K = 2). AMOVA exhibited 73 % variation within populations and 12 % variation was found among regions. Significant positive correlation between geographical and genetic distance was found (Rxy = 0.365, P = 0.010). The present study lays a foundation on a better understanding of genetic dynamics of the species and reveals its diversity and population structure in North-Western Plains of India.
  相似文献   

20.

Key message

A rapid and efficient Agrobacterium -mediated transformation system in sorghum has been developed employing standard binary vectors and bar gene as a selectable marker.

Abstract

Sorghum (Sorghum bicolor) is an important food and biofuel crop worldwide, for which improvements in genetic transformation are needed to study its biology and facilitate agronomic and commercial improvement. Here, we report optimization of regeneration and transformation of public sorghum genotype P898012 using standard binary vectors and bar gene as a selectable marker. The tissue culture regeneration time frame has been reduced to 7–12 weeks with a yield of over 18 plants per callus, and the optimized transformation system employing Agrobacterium tumefaciens strain AGL1 and the bar with a MAS promoter achieved an average frequency over 14 %. Of randomly analyzed independent transgenic events, 40–50 % carry single copy of integrated T-DNA. Some independent transgenic events were derived from the same embryogenic callus lines, but a 3:1 Mendelian segregation ratio was found in all transgenic events with single copy as estimated by Southern blots. The system described here should facilitate studies of sorghum biology and agronomic improvement.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号