首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Several studies have shown that the physical state of the phospholipid membrane has an important role in protein-membrane interactions, involving both electrostatic and hydrophobic forces. We have investigated the influence of the interaction of the calcium-depleted, (apo)-conformation of bovine α-lactalbumin (BLA) on the integrity of anionic glycerophospholipid vesicles by leakage experiments using fluorescence spectroscopy. The stability of the membranes was also studied by measuring surface tension/molecular area relationships with phospholipid monolayers. We show that the degree of unsaturation of the acyl chains and the proportion of charged phospholipid species in the membranes made of neutral and acidic glycerophospholipids are determinants for the association of BLA with liposomes and for the impermeability of the bilayer. Particularly, tighter packing counteracted interaction with BLA, while unsaturation—leading to looser packing—promoted interaction and leakage of contents. Equimolar mixtures of neutral and acidic glycerophospholipids were more permeable upon protein binding than pure acidic lipids. The effect of lipid structure on BLA-membrane interaction and bilayer integrity may throw new light on the membrane disrupting mechanism of a conformer of human α-lactalbumin (HAMLET) that induces death of tumour cells but not of normal cells.  相似文献   

2.
In Part 2 of this series of DFT optimization studies of α-maltotetraose, we present results at the B3LYP/6-311++G∗∗ level of theory for conformations denoted ‘band-flips’ and ‘kinks’. Recent experimental X-ray studies have found examples of amylose fragments with conformations distorted from the usual syn forms, and it was of interest to examine these novel structural motifs by the same high-level DFT methods used in Part 1. As in Part 1, we have examined numerous hydroxymethyl rotamers (gg, gt, and tg) at different locations in the residue sequence, and include the two hydroxyl rotamers, the clockwise ‘c’ and counterclockwise ‘r’ forms. A total of fifty conformations were calculated and energy differences were found to attempt to identify those sources of electronic energy that dictate stressed amylose conformations. Most stressed conformations were found to have relative energies considerably greater (i.e., ∼4 to 12 kcal/mol) than the lowest energy syn forms. Relative energy differences between ‘c’ and ‘r’ forms are somewhat mixed with some stressed conformations being ‘c’ favored and some ‘r’ favored, with the lowest energy ‘kink’ form being an all-gg-r conformation with the ‘kink’ in the bc glycosidic dihedral angles. Comparison of our calculated structures with experimental results shows very close correspondence in dihedral angles.  相似文献   

3.
  1. Download : Download high-res image (200KB)
  2. Download : Download full-size image
  相似文献   

4.
The present study was designed to evaluate the effects of synthetic ACTH (1–24, tetracosactid) and porcine CRH on the plasma levels of cortisol and PGF metabolite in cycling gilts (n = 3) and castrated boars (n = 3). The experiments were designed as crossover studies for each gender separately. Each animal received, during three consecutive days; 1) ACTH (Synacthen® Depot) at a dose of 10 μg/kg body weight in 5 ml physiological saline, 2) porcine CRH at a dose 0.6 μg/kg body weight in 5 ml physiological saline or 3) physiological saline (5 ml). The test substances were administered via an indwelling jugular cannula in randomized order according to a Latin square. The administration of ACTH to cycling gilts resulted in concomitant elevations of cortisol and PGF metabolite with peak levels reached at 70.0 ± 10.0 and 33.3 ± 6.7 min, respectively. Similarly, the administration of ACTH to castrated boars resulted in concomitant elevation of cortisol and PGF metabolite with peak levels reached at 60.0 ± 0.0 and 20.0 ± 0.0 min, respectively. Cortisol peaked at 20 min after administration of CRH in both cycling gilts and castrated boars with maximum levels of 149.3 ± 16.5 nmol/1 and 138.3 ± 10.1 nmol/1, respectively. It can be concluded that administration of synthetic ACTH (tetracosactid) to pigs caused a concomitant elevation of cortisol and PGF metabolite levels in both cycling gilts as well as castrated boars. The administration of CRH to pigs resulted in an elevation of cortisol levels in both cycling gilts and castrated boars. Conversely, PGF metabolite levels were not influenced by the administration of CRH either in cycling gilts or in castrated boars.  相似文献   

5.
INTRODUCTION: We hypothesize that adenosine and PGE(2) could have a complementary immunosuppressive effect that is mediated via common cAMP-PKA signaling. MATERIALS AND METHODS: To test this hypothesis, the effect of adenosine and PGE(2) on the cytotoxic activity and cytokine production of lymphokine activated killer (LAK) cells was investigated. RESULTS: PGE(2) and adenosine inhibited LAK cells cytotoxic activity and production of INF-gamma, GM-CSF and TNF-alpha. In combination they showed substantially higher inhibition than each modality used alone. Using agonists and antagonists specific for PGE(2) and adenosine receptors we found that cooperation of PGE(2) and adenosine in their inhibitory effects are mediated via EP(2) and A(2A) receptors, respectively. LAK cells have 35-fold higher expression of EP(2) than A(2A). Combined PGE(2) and adenosine treatment resulted in augmentation of cAMP production, PKA activity, CREB phosphorylation and inhibition of Akt phosphorylation. Wortmannin and LY294002 enhanced the suppressive effects of adenosine and PGE(2). In contrast, Rp-8-Br-cAMPS, an inhibitor of PKA type I blocked their immunosuppressive effects, suggesting that the inhibitory effects of PGE(2) and adenosine are mediated via common pathway with activation of cAMP-PKA and inhibition of Akt. CONCLUSION: In comparison to other immunosuppressive molecules (TGF-beta and IL-10), adenosine and PGE(2) are unique in their ability to inhibit the executive function of highly cytotoxic cells. High intratumor levels of adenosine and PGE(2) could protect tumor from immune-mediated destruction by inactivation of the tumor infiltrating functionally active immune cells.  相似文献   

6.
The CO2 sensitivity of transjunctional voltage (V j) gating was studied by dual voltage clamp in oocytes expressing mouse Cx40 or its COOH terminus (CT)-truncated mutant (Cx40-TR). V j sensitivity, determined by a standard V j protocol (20 mV V j steps, 120 mV maximal), decreased significantly with exposure to 30% CO2. The Boltzmann values of control versus CO2-treated oocytes were: V 0 = 36.3 and 48.7 mV, n = 5.4 and 3.7, and G j min = 0.21 and 0.31, respectively. CO2 also affected the kinetics of V j-dependent inactivation of junctional current (I j); the time constants of two-term exponential I j decay, measured at V j = 60 mV, increased significantly with CO2 application. Similar results were obtained with Cx40-TR, suggesting that CT does not play a role in this phenomenon. The sensitivity of Cx40 channels to 100% CO2 was also unaffected by CT truncation. There is evidence that CO2 decreases the V j sensitivity of Cx26, Cx50 and Cx37 as well, whereas it increases that of Cx45 and Cx32 channels. Since Cx40, Cx26, Cx50 and Cx37 gate at the positive side of V j, whereas Cx45 and Cx32 gate at negative V j, it is likely that V j behavior with respect to CO2-induced acidification varies depending on gating polarity, possibly involving the function of the postulated V j sensor (NH2-terminus).This revised version was published online in June 2005 with a corrected cover date.  相似文献   

7.
This study investigated the relationship between 13C of ecosystem components, soluble plant carbohydrates and the isotopic signature of ecosystem respired CO2 (13CR) during seasonal changes in soil and atmospheric moisture in a beech (Fagus sylvatica L.) forest in the central Apennine mountains, Italy. Decrease in soil moisture and increase in air vapour pressure deficit during summer correlated with substantial increase in 13C of leaf and phloem sap soluble sugars. Increases in 13C of ecosystem respired CO2 were linearly related to increases in phloem sugar 13C (r2=0.99, P0.001) and leaf sugar 13C (r2=0.981, P0.01), indicating that a major proportion of ecosystem respired CO2 was derived from recent assimilates. The slopes of the best-fit lines differed significantly (P0.05), however, and were about 0.86 (SE=0.04) for phloem sugars and about 1.63 (SE=0.16) for leaf sugars. Hence, changes in isotopic signature in phloem sugars were transferred to ecosystem respiration in the beech forest, while leaf sugars, with relatively small seasonal changes in 13C, must have a slower turnover rate or a significant storage component. No significant variation in 13C was observed in bulk dry matter of various plant and ecosystem components (including leaves, bark, wood, litter and soil organics). The apparent coupling between the 13C of soluble sugars and ecosystem respiration was associated with large apparent isotopic disequilibria. Values of 13CR were consistently more depleted by about 4 relative to phloem sugars, and by about 2 compared to leaf sugars. Since no combination of the measured pools could produce the observed 13CR signal over the entire season, a significant isotopic discrimination against 13C might be associated with short-term ecosystem respiration. However, these differences might also be explained by substantial contributions of other not measured carbon pools (e.g., lipids) to ecosystem respiration or contributions linked to differences in footprint area between Keeling plots and carbohydrate sampling. Linking the seasonal and inter-annual variations in carbon isotope composition of carbohydrates and respiratory CO2 should be applicable in carbon cycle models and help the understanding of inter-annual variation in biospheric sink strength.  相似文献   

8.
Seasonal oscillations in the carbon (δ13C) and nitrogen (δ15N) isotope signatures of aquatic algae can cause seasonal enrichment–depletion cycles in the isotopic composition of planktonic invertebrates (e.g., copepods). Yet, there is growing evidence that seasonal enrichment–depletion cycles also occur in the isotope signatures of larger invertebrate consumers, taxa used to define reference points in isotope-based trophic models (e.g., trophic baselines). To evaluate the general assumption of temporal stability in non-zooplankton aquatic invertebrates, δ13C and δ15N time series data from the literature were analyzed for seasonality and the influence of biotic (feeding group) and abiotic (trophic state, climate regime) factors on isotope temporal patterns. The amplitude of δ13C and δ15N enrichment–depletion cycles was negatively related to body size, although all size-classes of invertebrates displayed a winter-to-summer enrichment in δ13C and depletion in δ15N. Among feeding groups, periphytic grazers were more variable and displayed larger temporal changes in δ13C than detritivores. For nitrogen, temporal variability and magnitude of directional change of δ15N was most strongly related to ecosystem trophic state (eutrophic > mesotrophic, oligotrophic). This study provides evidence of seasonality in the isotopic composition of aquatic invertebrates across very broad geographical and ecological gradients as well as identifying factors that are likely to modulate the strength and variability of seasonality. These results emphasize the need for researchers to recognize the likelihood of temporal changes in non-zooplankton aquatic invertebrate consumers at time scales relevant to seasonal studies and, if present, to account for temporal dynamics in isotope trophic models.  相似文献   

9.
Here we analyze the molecular evolution of the β-esterase gene cluster in the Drosophila genus using the recently released genome sequences of 12 Drosophila species. Molecular evolution in this small cluster is noteworthy because it contains contrasting examples of the types and stages of loss of gene function. Specifically, missing orthologs, pseudogenes, and null alleles are all inferred. Phylogenetic analyses also suggest a minimum of 9 gene gain–loss events; however, the exact number and age of these events is confounded by interparalog recombination. A previous enigma, in which allozyme loci were mapped to β-esterase genes that lacked catalytically essential amino acids, was resolved through the identification of neighbouring genes that contain the canonical catalytic residues and thus presumably encode the mapped allozymes. The originally identified genes are evolving with selective constraint, suggesting that they have a “noncatalytic” function. Curiously, 3 of the 4 paralogous β-esterase genes in the D. ananassae genome sequence have single inactivating (frame-shift or nonsense) mutations. To determine whether these putatively inactivating mutations were fixed, we sequenced other D. ananassae alleles of these four loci. We did not find any of the 3 inactivating mutations of the sequenced strain in 12 other strains; however, other inactivating mutations were observed in the same 3 genes. This is reminiscent of the high frequency of null alleles observed in one of the β-esterase genes (Est7/EstP) of D. melanogaster. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
  1. Download : Download high-res image (317KB)
  2. Download : Download full-size image
  相似文献   

12.
Conformational and dynamic properties of proteins and peptides play an important role in their functioning. However, mechanisms that underlie this influence have not been fully elucidated. In the present work we computationally constructed analogs of heptapeptide AFP14–20 (LDSYQCT) — one of the biologically active sites of human α-fetoprotein (AFP) — to study their conformational and dynamic properties using molecular dynamics simulation. Analogs were obtained by point substitutions of amino acid residues taking into account differences in their physicochemical properties and also on the basis of analysis of amino acid substitutions in the AFP14–20-like motifs revealed in different physiologically active proteins. It is shown that changes in conformational mobility of amino acid residues of analogs are due to disruption or arising of intramolecular interactions that, in turn, determine existence of steric restrictions during rotation around covalent bonds of the peptide backbone. Substitution of an amino acid by another one with significant difference in physicochemical properties may not lead to remarkable changes in conformational and dynamic properties of the peptide if intramolecular interactions remain unchanged.  相似文献   

13.
Henipavirus, including Hendra virus (HeV) and Nipah virus (NiV), is a newly discovered human pathogen genus. The nucleoprotein of Henipavirus contains an α-helical molecular recognition element (α-MoRE) that folds upon binding to the X domain (XD) of the phosphoprotein (P). In order to explore the conformational dynamics of free α-MoREs and the underlying binding-folding mechanism with XD, atomic force field-based and hybrid structure-based MD simulations were carried out. In our empirical force field-based simulations, characteristic structures and helicities of α-MoREs reveal the co-existence of partially structured and disordered conformations, as in the case of the well characterized cognate measles virus (MeV) α-MoRE. In spite of their overall similarity, the two α-MoREs display subtle helicity differences in their C-terminal region, but much different from that of MeV. For the α-MoRE/XD complexes, the results of our hybrid structure-based simulations provide the coupled binding-folding landscapes, and unveil a wide conformational selection mechanism at early binding stages, followed by a final induce-fit mechanism selection process. However, the HeV and NiV complexes have a lower binding barrier compared to that of MeV. Moreover, the HeV α-MoRE/XD complex shows much less coupling effects between binding and folding compared to that from both NiV and MeV. Our analysis revealed that contrary to NiV and MeV, the N- and C-terminal regions of the HeV α-MoRE maintains a low helicity also in the bound form.  相似文献   

14.
The effects of FeCl3 and Fe–EDTA on the development of psoriasis were studied in the mouse model of vaginal epithelium and tail epidermis. The mitoses of vaginal epithelial cell in female mice of their estrogenic stage and the formation of granular cell layers in male mouse tail scale were observed. Mice were randomly divided into eight groups and treated with normal saline, methotrexate, and different doses of two iron forms, FeCl3 and Fe–EDTA, respectively, for 10 days. To explore the influence of FeCl3 and Fe–EDTA on the excretion of Cu, Fe, Zn, Ca, Mg, Mn, and Se, the concentration of those elements in liver and kidney was analyzed by atomic absorption spectrometry. The different doses of FeCl3 or Fe–EDTA could obviously inhibit the mitoses of vaginal epithelial cell (p< 0.05) and promote the formation of granular cell layers in mice tail scale (p < 0.05). No statistically significant results were found between the groups of FeCl3 and Fe–EDTA, and between experimental groups and methotrexate group acted as the positive control (p>0.05). Compared with the negative group, the concentrations of Cu, Fe, Zn, Ca, Mg, Mn, and Se in liver and kidney of experimental groups and positive control group were not significantly changed (p > 0.05). FeCl3 and Fe–EDTA are as effective as methotrexate on inhibiting hyperplasia of epidermal cells and increasing the formation of granular cell layers, and the concentrations of Cu, Fe, Zn, Ca, Mg, Mn, and Se in liver and kidney of experimental groups and positive control group were not significantly changed compared with the negative group, possibly retarding the development of psoriasis.  相似文献   

15.
Negative impacts exerted by sodium (Na+) and chloride (Cl?) ions individually as well their possible additive effects (under NaCl) were evaluated on growth and yield reductions in rice, besides investigating whether salt-tolerant genotypes respond differentially than their sensitive counterparts. Though both Na+ and Cl? ions get accumulated in plant tissues under NaCl stress, most research has historically been aimed to decipher harmful effects induced by Na+ ions. Accordingly, physiological and molecular mechanisms involved in Cl? toxicity are not clearly understood in crop plants. To address these issues, 65-day-old plants of two rice cultivars, Panvel-3 (tolerant) and Sahyadri-3 (sensitive) were subjected to Cl?, Na+ and NaCl (each with 100 mM concentration and electrical conductivity of ≈10 dS m?1) stress using soil-based systems. Stress conditions were maintained till harvesting of mature (128-day-old) plants. All three treatments induced substantial antagonistic effects on growth, dry mass, yield components (number of grains per panicle, length, width, thickness and weight of grain, along with the percentage of grains filled) and overall crop yield, with greater impacts under NaCl than its constituent ions. Salinity treatments caused an imbalance in reducing sugars, protein, starch and proline contents, with the greatest magnitude under NaCl. A negative correlation between Cl?/Na+ accumulation and crop yield was witnessed, with higher severity on the sensitive cultivar. The overall magnitude of toxicity was observed highest in NaCl followed by Na+ and Cl?, respectively, suggesting additive effects of constituent ions under NaCl. Both cultivars responded similarly; however, the tolerant cultivar, unlike the sensitive one, kept Na+:K+ ratio <1.0 and accumulated proline in response to salinity treatments used in this study.  相似文献   

16.
The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves.  相似文献   

17.
Matthews B  Mazumder A 《Oecologia》2004,140(2):361-371
Individual variation in the diet of consumers is common in many ecological systems and has important implications for the study of population dynamics, animal behavior, and evolutionary or ecological interactions. Ecologists frequently quantify the niche of a population by intensive analyses of gut contents and feeding behaviors of consumers. Inter-individual differences in 13C signature can indicate long term differences in feeding behavior, often unattainable by a single snapshot analysis of gut contents. If a consumers food sources have unique 13C signatures, then the intrapopulation variation in 13C may be useful for quantifying diet variation and detecting isotopic evidence of individual specialization. However, intrapopulation variation in 13C can underestimate or overestimate dietary variation, and therefore is not directly equivalent to a dietary based niche. In this paper we show that intrapopulation variability of 13C in consumers critically depends on the isotopic range and distribution of food sources. Our analyses fundamentally challenge how we interpret the intrapopulation isotopic variance of 13C, and how we evaluate isotopic evidence of individual specialization.  相似文献   

18.
Summary Natural products, including flavonoids, are suggested to be involved in the protective effects of fruits and vegetables against cancer. However, studies concerning the effect of flavonoids frequently lacked data regarding to flavanones. In this study, we investigated the inhibitory effect of flavanone compounds, including flavanone, 2′-OH flavanone, 4′-OH flavanone, 6-OH flavanone, naringin and naringenin, on cell growth of various cancer cells. We determined that flavanone and 2′-OH flavanone inhibited cell growth of A549, LLC, AGS, SK-Hepl and HA22T cancer cells, while other flavanones showed little or no inhibition. We evaluated growth-inhibitory activity of flavanone and 2′-OH flavanone against highly proliferative human lung cancer cells (A549) via anchorage-independent and -dependent colony formation assay, and further showed that treatment of flavanone resulted in a G1 cell cycle arrest with reduction of cyclin D, E and cyclin-dependent kinase (CDK) 2, while treatment of 2′-OH flavanone led to a G2/M phase accumulation with reduction of cyclin B, D and Cdc2. Moreover, we demonstrated the improvement effect of flavanone and 2′-OH flavanone with anti-cancer drug, doxorubicin, on A549 cells. Finally, flavanone and 2′-OH flavanone were evidenced by its inhibition on the growth of A549 and Lewis lung carcinoma cells in vivo. Yung-Chin Hsiao and Yih-Shou Hsieh are equally contributed to this work.  相似文献   

19.
20.
Poly(A+)RNA was prepared from anterior pituitary glands of ovariectomized (ovx) ewes and rats and the mRNAs were translated in a wheat-germ cell-free system in the presence of [35S]-labeled cysteine and methionine. Specific antisera raised against denaturated (RCXM) ovine FSHβ and α-subunits were used to demonstrate the in vitro synthesis of FSH subunits. Anti-RCXM FSHβ precipitated a single polypeptide, exhibiting a Mr ? 19,000 by SDS-polyacrylamide gel electrophoresis whether its synthesis was directed by ewe or rat mRNA. A Mr of 17,000–17,500 was found for the α-polypeptide. FSHβ-polypeptides represented about 0.015–0.019% of the total radioactivity incorporated in response to mRNA from ovx ewes and 0.046–0.050% in the case of mRNA from ovx rats. LHβ-polypeptides represented, under the same conditions, respectively, about 0.81% and 0.44% and α-polypeptides, 1.19% and 1.33%. Further, our results indicate that FSHβ is synthesized as a precursor with a size larger than the authentic apopeptide and that the β-subunits of either LH or FSH, as well as their common subunit α are encoded by distinct mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号