首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of the DBP(n) fluorescent symmetric dimeric bisbenzimidazoles in which the bisbenzimidazole fragments were attached to an oligomeric linker with the 1,4-piperazine residue in its center were prepared. The DBP(n) molecules were distinguished by the number of methylene groups n (where n = 1, 2, 3, 4) in the linker. The DBP(n) synthesis was based on a condensation of the monomeric bisbenzimidazole (MB) with 1,4-piperazinedialkylcarbonic acids. The ability of the DBP(n) dimeric bisbenzimidazoles to form complexes with the double-stranded DNA was demonstrated by a complex of physicochemical methods, including spectroscopy in the visual UV-area, circular dichroism (CD), and fluorescence. The DBP(1–4) molecules were localized in the DNA minor groove by the CD method with the use of cholesteric liquid-crystalline dispersions (CLCD) of the double-stranded DNA. The DBP(n) dimeric bisbenzimidazoles were easily soluble in water, penetrated through cellular and nuclear membranes, and stained DNA in living cells distinct from the previously synthesized DB(n) series.  相似文献   

2.
Rhynchospora glomerata and its closest relatives comprise a group of beakesedges widespread and frequent in much of North America. The classification of the R. glomerata complex remains unresolved and controversial. The goals of this study are to determine the number of taxa in the complex and their ranks, and identify their best diagnostic characters. Measurements of eight characters from each of 101 specimens from throughout the geographic range of the complex furnished data for morphometric analyses. These analyses reveal the R. glomerata complex contains three species and no infraspecific taxa: R. capitellata, R. glomerata, and R. leptocarpa. We detected 10 validly published basionyms in the complex, five of which required lectotypification. Accordingly, we designated lectotypes for R. glomerata var. discutiens, R. glomerata var. minor, R. glomerata var. paniculata, and R. glomerata var. robustior, and the second-step lectotype for R. capitellata var. controversa.  相似文献   

3.

Key message

In tree roots, a large fraction of root-respired CO 2 remains within the root system rather than diffusing into the soil. This CO 2 is transported in xylem sap into the shoot, and because respiration is almost always measured as the flux of CO 2 into the atmosphere from plant tissues, it represents an unaccounted-for component of tree root metabolism.

Abstract

Root respiration has been considered a large component of forest soil CO2 efflux, but recent findings indicate that it may be even more important than previous measurements have shown because a substantial fraction of root-respired CO2 remains within the tree root system and moves internally with the transpiration stream. The high concentration of CO2 in roots appears to originate mainly within the root. It has been suggested that plants can take up dissolved inorganic carbon (DIC) from soil, but under most conditions uptake from soil is minimal due to the root-to-soil diffusion gradient, which suggests that most of the CO2 in root xylem is derived from root respiration. Estimates of the internal flux of CO2 through root xylem are based on combined measurements of sap flow and internal [CO2]. Results quantifying root xylem CO2 flux, obtained for a limited number of species, have raised important concerns regarding our understanding of tree respiration. Taken together, the results of these studies call into question the partitioning of ecosystem respiration into its above- and belowground components, and redefine the energetic costs of tree root metabolism and hence estimates of belowground carbon allocation. Expanding our observations of root xylem CO2 flux to more species and at longer time scales, as well as improving the techniques used to study this process, could be fruitful avenues for future research, with the potential to substantially revise our understanding of root respiration and forest carbon cycles.
  相似文献   

4.

Key message

The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.

Abstract

A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
  相似文献   

5.

Key message

The biomass, morphology, and respiration of the fine roots of Chamaecyparis obtusa did not change between different soil acid buffering capacities. Soil nitrate has noticeable effects on morphology and respiration.

Abstract

Low soil acid buffering capacity (ABC) accelerates soil acidification because of the lower concentrations of base cations (BC) and higher concentrations of aluminum (Al) present under such conditions. More information on fine root traits across soil ABC gradients is required to evaluate the effects of accelerated soil acidification in mature forests, especially in East Asia. We investigated the biomass, morphology (specific root length; SRL), and respiration rates of fine roots and analyzed the soil nitrogen status in seven Chamaecyparis obtusa stands with two highly contrasting ABC soils. There were no significant differences in the biomass, SRL, and respiration rates of fine roots between high- and low-ABC stands. However, fine roots in the low-ABC stands were concentrated in the uppermost soil layers and the biomass proportion of roots <0.5 mm in diameter was higher in low-ABC stands than in high-ABC stands. The fine root biomass increased with increasing soil Al, NH4 +-N, and C and with decreasing soil BC and bulk density. The SRL and respiration rates of fine roots were positively correlated with soil NO3 ?-N. We conclude that the fine root traits were affected not only by soil ABC but also by other soil properties in the forest.
  相似文献   

6.

Key message

Leaf relative water content, leaf area, leaf fresh weight, and SPAD chlorophyll meter readings along with Co - rbcL and Co - rbcS expression can be used for evaluating Camellia oleifera responses to combined drought and heat stress and subsequent recovery after rainfall events.

Abstract

Leaf characteristics, soluble protein and total soluble sugar contents as well as Rubisco-related gene expression in three cultivars of C. oleifera were measured during a combined drought and heat stress period and after subsequent rainfall events. Leaf relative water content (RWC) was significantly correlated with leaf area (LA), leaf fresh weight (FW), SPAD chlorophyll meter readings, and the levels of Co-rbcL and Co-rbcS expression. Results suggest that leaf RWC, LA, leaf FW, SPAD readings together with Co-rbcL and Co-rbcS expression can be used for evaluating responses of C. oleifera cultivars to combined drought and heat stress and subsequent recovery after rainfall events. Rubisco activase might be used for evaluating plant recovery after rainfall. This study identified cultivars differing in tolerance to the combined stress and recovery. Information derived from this study should be valuable for improving survivability and productivity of C. oleifera cultivars.
  相似文献   

7.

Main conclusion

We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10.Flavonoid biosynthesis is one of the best-studied secondary metabolite pathways in plants. In the model system Arabidopsis thaliana it leads to the synthesis of three phenolic compound classes: flavonol glycosides, anthocyanins and proanthocyanidins (PAs). PAs appear brown in their oxidised polymeric forms, and most A. thaliana mutants impaired in flavonoid accumulation were identified through screens for lack of this seed coat pigmentation. These mutants are referred to as transparent testa (tt) or tannin-deficient seed (tds). More than 20 mutants of these types have been published, probably representing most of the genes relevant for PA accumulation in A. thaliana. However, data about the genes involved in PA deposition or oxidation are still rather scarce. Also, for some of the known mutants it is unclear if they represent additional loci or if they are allelic to known genes. For the present study, we have performed a systematic phenotypic characterisation of almost all available tt and tds mutants and built a collection of mutants in the genetic background of the accession Columbia to minimise effects arising from ecotype variation. We have identified a novel tt6 allele from a forward genetic screen and demonstrated that tds3 is allelic to tt12 and tds5 to aha10.
  相似文献   

8.
Four new platinum(II) complexes: PtII L1·H2O (C1, H2 L1 = C20H16N2O2), PtII L2Cl2 (C2, L2 = C22H16N2O2), PtII L3Cl2·H2O (C3, L3 = C20H16N2), PtII L4Cl2·0.4H2O (C4, L4 = C18H14N4) have been synthesized and characterized by using various physico-chemical techniques. The binding interaction of the four platinum(II) complexes C1C4 with calf thymus (CT)-DNA has been investigated by UV–Vis and fluorescence emission spectrometry. The apparent binding constant (K app) values follow the order: C3 > C1 > C2 > C4. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the four platinum(II) complexes C1C4 showed that the quenching mechanism might be a static quenching procedure. For C1C4, the number of binding sites was about one for BSA and the binding constants follow the order: C3 (7.08 × 105M?1) > C1 (2.82 × 105M?1) > C2 (0.85 × 105M?1) > C4 (0.15 × 105M?1). With the single condition change such as absence of an external agent, the DNA cleavage abilities of C3 exhibit remarkable changes. In addition, the cytotoxicity of C3 in vitro on tumor cells lines (MCF-7, HepG2 and HT29) were examined by MTT and showed better antitumor effects on the tested cells.  相似文献   

9.

Key message

Growth ring study of Pinus kesiya (khasi pine) growing in sub-tropical forest in Manipur, northeast India was performed to understand climate signatures in ring widths and intra-annual density fluctuations.

Abstract

The growth rings in khasi pine (Pinus kesiya Royle ex Gordon) growing in sub-tropical Reserve Forest in Imphal, Manipur, northeast India were analysed to understand environmental signals present in ring-width series and intra-annual density fluctuations (IADFs). For this the growth ring sequences in increment core samples collected from 28 trees were precisely dated and a ring-width chronology spanning AD 1958–2014 developed. The correlation analyses between ring-width chronology and weather data of Imphal revealed that a cool April–May–June favour tree growth. The wood anatomical features of growth rings revealed the occurrence of IADFs in early- and latewoods. The IADFs in earlywood were found to be associated with reduced precipitation in months from April to July. However, the wetter conditions in late growing season, especially August/September triggered the formation of IADFs in latewood. Our findings endorse that the IADF chronologies of khasi pine could emerge as an important proxy of summer monsoon rainfall in long-term perspective in data scarce region of northeast India.
  相似文献   

10.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

11.
12.
13.

Key message

For long-term environmental investigations, tree-ring δ 15 N values are inappropriate proxies for foliar δ 15 N for both Fagus sylvatica and Picea abies under moderate N loads.

Abstract

Currently it is unclear whether stable nitrogen isotope signals of tree-rings are related to those in foliage, and whether they can be used to infer tree responses to environmental changes. We studied foliar and tree-ring nitrogen (δ15N) and carbon (δ13C) isotope ratios in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) from six long-term forest monitoring sites in Switzerland together with data on N deposition and soil N availability, as well as a drought response index over the last two decades. For both species, tree-ring δ15N and δ13C values were less negative compared to foliar δ15N and δ13C values, most likely due to recycling and reallocation of N within the tree and fractionation processes associated with the transport of sucrose and the formation of tree-rings, respectively. Temporal trends recorded in foliar δ15N were not reflected in tree-ring δ15N, with much higher variations in tree-rings compared to foliage. Soil N availability and N deposition were partially able to explain changes in foliar δ13C, while there were no significant correlations between environmental variables and either tree-ring or foliar δ15N. Our results suggest an uncoupling between the N isotopic composition of tree-rings and foliage. Consequently, tree-ring δ15N values are inappropriate proxies of foliar δ15N values under low-to-moderate N deposition loads. Furthermore, at such low levels of deposition, tree-ring δ15N values are not recommended as archives of tree responses to soil C/N or bulk N deposition.
  相似文献   

14.

Key message

Rsc15, a novel locus underlying soybean resistance to SMV, was fine mapped to a 95-kb region on chromosome 6. The Rsc15- mediated resistance is likely attributed to the gene GmPEX14 , the relative expression of which was highly correlated with the accumulation of H 2 O 2 along with the activities of POD and CAT during the early stages of SMV infection in RN-9.

Abstract

Soybean mosaic virus (SMV) causes severe yield losses and seed quality deterioration in soybean [Glycine max (L.) Merr.] worldwide. A series of single dominant SMV resistance genes have been identified on respective soybean chromosomes 2, 13 and 14, while one novel locus, Rsc15, underlying resistance to the virulent SMV strain SC15 from soybean cultivar RN-9 has been recently mapped to a 14.6-cM region on chromosome 6. However, candidate gene has not yet been identified within this region. In the present study, we aimed to fine map the Rsc15 region and identify candidate gene(s) for this invaluable locus. High-resolution fine-mapping revealed that the Rsc15 gene was located in a 95-kb genomic region which was flanked by the two simple sequence repeat (SSR) markers SSR_06_17 and BARCSOYSSR_06_0835. Allelic sequence comparison and expression profile analysis of candidate genes inferred that the gene Glyma.06g182600 (designated as GmPEX14) was the best candidate gene attributing for the resistance of Rsc15, and that genes encoding receptor-like kinase (RLK) (i.e., Glyma.06g175100 and Glyma.06g184400) and serine/threonine kinase (STK) (i.e., Glyma.06g182900 and Glyma.06g183500) were also potential candidates. High correlations were established between the relative expression level of GmPEX14 and the hydrogen peroxide (H2O2) concentration and activities of catalase (CAT) and peroxidase (POD) during the early stages of SMV-SC15 infection in RN-9. The results of the present study will be useful in marker-assisted breeding for SMV resistance and will lead to further understanding of the molecular mechanisms of host resistance against SMV.
  相似文献   

15.
16.

Key message

Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype.

Abstract

Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.
  相似文献   

17.

Key message

A Brd2 allele suppresses heading date by altering the expression of heading date regulators such as OsMADS50 , and also negatively regulates chlorophyll biosynthesis.

Abstract

Heading date and plant height are important determinants of yield in rice (Oryza sativa L.). In this study, we characterized a late heading, dwarf mutant known as lhdd10 selected following ethyl methane sulfonate (EMS)-treatment of ssp. indica cultivar 93-11. lhdd10 showed late heading, dwarfness and slightly darker-green leaves than wild-type 93-11 under long-day and short-day conditions. We isolated lhdd10 by map-based cloning; it encoded a putative FAD-linked oxidoreductase protein (a brassinosteroid biosynthetic gene) that localized to the nucleus. LHDD10 was constitutively expressed in various tissues, but more so in shoot apices and panicles. Our data showed that lhdd10 influences heading date by controlling the expression of heading date regulators, such as OsMADS50 in both LD and SD conditions. lhdd10 also negatively regulated expression of chlorophyll biosynthetic genes to reduce the chlorophyll content. Our data indicated that BRs play important roles in regulating heading date and chlorophyll biosynthesis. This work provides material that will allow study of how BRs regulate heading date in rice.
  相似文献   

18.

Key message

This review gives a comprehensive overview of adaptations of mangrove root system to the adverse environmental conditions and summarizes the ecological importance of mangrove root to the ecosystem.

Abstract

In plants, the first line of defense against abiotic stress is in their roots. If the soil surrounding the plant root is healthy and biologically diverse, the plant will have a higher chance to survive in stressful conditions. Different plant species have unique adaptations when exposed to a variety of abiotic stress conditions. None of the responses are identical, even though plants have become adapted to the exact same environment. Mangrove plants have developed complex morphological, anatomical, physiological, and molecular adaptations allowing survival and success in their high-stress habitat. This review briefly depicts adaptive strategies of mangrove roots with respect to anatomy, physiology, biochemistry and also the major advances recently made at the genetic and genomic levels. Results drawn from the different studies on mangrove roots have further indicated that specific patterns of gene expression might contribute to adaptive evolution of mangroves under high salinity. We also review crucial ecological contributions provided by mangrove root communities to the ecosystem including marine fauna.
  相似文献   

19.

Key message

A comparative genetics approach allowed to precisely determine the map position of the restorer gene Rfp3 in rye and revealed that Rfp3 and the restorer gene Rfm1 in barley reside at different positions in a syntenic 4RL/6HS segment.

Abstract

Cytoplasmic male sterility (CMS) is a reliable and striking genetic mechanism for hybrid seed production. Breeding of CMS-based hybrids in cereals requires the use of effective restorer genes as an indispensable pre-requisite. We report on the fine mapping of a restorer gene for the Pampa cytoplasm in winter rye that has been tapped from the Iranian primitive rye population Altevogt 14160. For this purpose, we have mapped 41 gene-derived markers to a 38.8 cM segment in the distal part of the long arm of chromosome 4R, which carries the restorer gene. Male fertility restoration was comprehensively analyzed in progenies of crosses between a male-sterile tester genotype and 21 recombinant as well as six non-recombinant BC4S2 lines. This approach allowed us to validate the position of this restorer gene, which we have designated Rfp3, on chromosome 4RL. Rfp3 was mapped within a 2.5 cM interval and cosegregated with the EST-derived marker c28385. The gene-derived conserved ortholog set (COS) markers enabled us to investigate the orthology of restorer genes originating from different genetic resources of rye as well as barley. The observed localization of Rfp3 and Rfm1 in a syntenic 4RL/6HS segment asks for further efforts towards cloning of both restorer genes as an option to study the mechanisms of male sterility and fertility restoration in cereals.
  相似文献   

20.

Key message

In black spruce stands on permafrost, trees and understory plants showed higher biomass allocation especially to ‘thin’ fine roots (diam. < 0.5 mm) when growing on shallower permafrost table.

Abstract

Black spruce (Picea mariana) forests in interior Alaska are located on permafrost and show greater below-ground biomass allocation than non-permafrost forests. However, information on fine roots (roots <2 mm in diameter), which have a key role in nutrient uptake and below-ground carbon flux, is still limited especially for effects of different permafrost conditions. In this study, we examined fine root biomass in two black spruce stands with different depths to the permafrost table. In the shallow permafrost (SP) plot, fine root biomass of black spruce trees was 70 % of that in the deep permafrost (DP) plot. In contrast, ratio of the fine root biomass to above-ground biomass was greater in the SP plot than in the DP plot. Understory plants, on the other hand, showed larger fine root biomass in the SP plot than in the DP plot, whereas their above-ground biomass was similar between the two plots. In addition, biomass proportion of ‘thin’ fine roots (diam. <0.5 mm) in total fine roots was greater in the SP plot than in the DP plot. These results suggest that black spruce trees and understory plants could increase biomass allocation to fine roots for efficient below-ground resource acquisition from colder environments with shallower permafrost table. In the SP plot, fine roots of understory plants accounted for 30 % of the stand fine root biomass, suggesting that understory plants such as Ledum and Vaccinium spp. would have significant contribution to below-ground carbon dynamics in permafrost forests.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号